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Abstract
In this chapter the general TGD inspired mathematical ideas re-

lated to p-adic numbers are discussed. The extensions of the p-adic
numbers including extensions containing transcendentals, the corre-
spondences between p-adic and real numbers, p-adic differential and
integral calculus, and p-adic symmetries and Fourier analysis belong
the topics of the chapter.

The basic hypothesis is that p-adic space-time regions correspond to
cognitive representations for the real physics appearing already at the
elementary particle level. The interpretation of the p-adic physics as a
physics of cognition is justified by the inherent p-adic non-determinism
of the p-adic differential equations making possible the extreme flexi-
bility of imagination.

p-Adic canonical identification and the identification of reals and
p-adics by common rationals are the two basic identification maps be-
tween p-adics and reals and can be interpreted as two basic types of
cognitive maps. The concept of p-adic fractality is defined and p-adic
fractality is the basic property of the cognitive maps mapping real
world to the p-adic internal world. Canonical identification is not gen-
eral coordinate invariant and at the fundamental level it is applied only
to map p-adic probabilities and predictions of p-adic thermodynamics
to real numbers. The correspondence via common rationals is general
coordinate invariant correspondence when general coordinate transfor-
mations are restricted to rational or extended rational maps: this has
interpretation in terms of fundamental length scale unit provided by
CP2 length.

A natural outcome is the generalization of the notion of number.
Different number fields form a book like structure with number fields
and their extensions representing the pages of the book glued together
along common rationals representing the rim of the book. This gener-
alization forces also the generalization of the manifold concept: both
imbedding space and configuration space are obtained as union of
copies corresponding to various number fields glued together along
common points, in particular rational ones. Space-time surfaces de-
compose naturally to real and p-adic space-time sheets. In this frame-
work the fusion of real and various p-adic physics reduces more or less
to to an algebraic continuation of rational number based physics to
various number fields and their extensions.

p-Adic differential calculus obeys the same rules as real one and
an interesting outcome are p-adic fractals involving canonical identi-
fication. Perhaps the most crucial ingredient concerning the practical
formulation of the p-adic physics is the concept of the p-adic valued
definite integral. Quite generally, all general coordinate invariant defi-
nitions are based on algebraic continuation by common rationals. In-
tegral functions can be defined using just the rules of ordinary calculus
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and the ordering of the integration limits is provided by the corre-
spondence via common rationals. Residy calculus generalizes to p-adic
context and also free Gaussian functional integral generalizes to p-adic
context and is expected to play key role in quantum TGD at configu-
ration space level.

The special features of p-adic Lie-groups are briefly discussed: the
most important of them being an infinite fractal hierarchy of nested
groups. Various versions of the p-adic Fourier analysis are proposed:
ordinary Fourier analysis generalizes naturally only if finite-dimensional
extensions of p-adic numbers are allowed and this has interpretation
in terms of p-adic length scale cutoff. Also p-adic Fourier analysis pro-
vides a possible definition of the definite integral in the p-adic context
by using algebraic continuation.

1 Introduction

There have been a lot of early speculations about the role of the p-adic
numbers in Physics
[16, 17, 18]. In [19] one can find a review of the work done. In general the
work is related to the quantum theory and based on the assumption that the
quantum mechanical state space is an ordinary complex Hilbert space. This
is not absolutely necessary since p-adic unitarity and probability concepts
make sense [20]. What is however essential is some kind of correspondence
between the p-adic and real numbers since the predictions of, say p-adic
quantum mechanics, should be expressed in terms of the real numbers.

One can imagine two kinds of correspondences between reals and p-adics.
a) The correspondence defined by rational numbers regarded as common

to real and p-adic number fields and their extensions applies at the level of
geometry. The generalization of the number concept obtained by gluing all
number fields together along common rational numbers generalizes also to
the level of manifolds and Hilbert spaces.

b) Another correspondence is based on the canonical identification and
can be used to map p-adic probabilities to their real counterparts. Also the
predictions of p-adic thermodynamics for mass squared values of elementary
particles can be mapped to the p-adic numbers using the correspondence.
Canonical identification does not however work at space-time level since
it does not respect field equations nor even differentiability although it is
continuous.

c) A compromize between canonical correspondence and identification
via common rationals is achieved by using a modification of canonical iden-
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tification IRp→R defined as I1(r/s) = I(r)/I(s).
The formulation of the p-adic physics requires the construction of the

p-adic differential and integral calculus. Also the p-adic counterparts of
Hilbert space, group theory, and Fourier analysis are needed as also the gen-
eralization of manifold concept, Riemann geometry, sub-manifold geometry,
and even configuration space geometry. These generalizations are discussed
in this and subsequent chapter.

1.1 Canonical identification

The notion of canonical identification dominated p-adic TGD almost for a
decade. Canonical identification is a canonical correspondence between the
p-adic numbers and nonnegative real numbers defined by the ”pinary” ex-
pansion of real number: positive real number x =

∑
xnpn (x = 0, 1, .., p− 1,

p prime) is mapped to p-adic number
∑

xnp−n. This canonical correspon-
dence allows to induce p-adic topology to the real axis. p-Adically differen-
tiable functions define typically fractal like real functions via the canonical
identification so that p-adic numbers provide analytic tool for producing
fractals. p-Adic numbers allow algebraic extensions of arbitrary dimension
and the concept of complex analyticity generalizes to p-adic analyticity.

The concepts of the p-adic probability and unitarity make sense and one
can associate with the p-adic probabilities unique real probabilities using
the canonical correspondence and this predicts novel physical effects. The
successful p-adic description of the particle massivation relies heavily on the
canonical correspondence.

1.2 Identification via common rationals

Besides canonical identification there is also a second natural correspondence
between reals and p-adics. This correspondence is induced via common
rationals in the sense that one can regard p-adics and reals as different
completions of rationals and given rational number can be identified as an
element or reals or of any p-adic number field.

For instance, if S-matrix is complex rational matrix or belongs to finite-
dimensional extension or rationals, one can regard it as either real or p-adic
S-matrix. The assumption that the so called CKM matrix describing quark
mixings is complex rational, fixes with some empirical inputs the CKM ma-
trix essentially uniquely. Second example: if it is assumed that fundamental
state space has complex rationals as a coefficient field, it becomes sensible to
define tensor factors of Hilbert spaces belonging to different number fields
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because entanglement is possible with complex rational coefficients. One
could also see the basic physics as essentially rational and real and p-adic
physics as different algebraic continuations of it. Also much more general vi-
sion encouraged by TGD inspired theory of consciousness and p-adic physics
as physics of cognition and intentionality is possible.

On can generalize the concepts of the definite integral, Hilbert space,
Riemannian manifold, and Lie group to the p-adic context in a relatively
straightforward manner and the correspondence via common rationals makes
it possible to carry out these generalizations as an algebraic continuation
with clear interpretation about what is involved. The generalization of the
number concept generalizes these structures so that real and various p-adic
variants of the structure can be seen as various facets of the generalized
structure.

1.3 Hybrid of canonical identification and identification via
common rationals

A compromize between canonical correspondence and identification via com-
mon rationals is achieved by using a modification of canonical identification
IRp→R defined as I1(r/s) = I(r)/I(s). If the conditions r ¿ p and s ¿ p
hold true, the map respects algebraic operations and also unitarity and var-
ious symmetries. It seems that this option must be used to relate p-adic
transition amplitudes to real ones and vice versa [F5]. In particular, real
and p-adic coupling constants are related by this map. Also some problems
related to p-adic mass calculations find a nice resolution when I1 is used.

This variant of canonical identification is not equivalent with the original
one using the infinite expansion of q in powers of p since canonical identifi-
cation does not commute with product and division. The variant is however
unique in the recent context when r and s in q = r/s have no common
factors. For integers n < p it reduces to direct correspondence. Rp1 and
Rp2 are glued together along common rationals by an the composite map
IR→Rp2

IRp1→R.

1.4 Topics of the chapter

The topics of the chapter are the following:
a) p-Adic numbers, their extensions (also those involving transcenden-

tals) are described. The existence of a square root of an ordinary p-adic
number is necessary in many applications of the p-adic numbers (p-adic
group theory, p-adic unitarity, Riemannian geometry) and its existence im-
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plies a unique algebraic extension, which is 4-dimensional for p > 2 and
8-dimensional for p = 2. Contrary to the first expectations, all possible
algebraic extensions are possible and one cannot interpret the algebraic di-
mension of the algebraic extension as a physical dimension.

b) The concepts of the p-adic differentiability and analyticity are dis-
cussed. The notion of p-adic fractal is introduced the properties of the
fractals defined by p-adically differentiable functions are discussed.

c) Various approaches to the problem of defining p-adic valued definite
integral are discussed. The only reasonable generalizations rely on algebraic
continuation and correspondence via common rationals. p-Adic field equa-
tions do not necessitate p-adic definite integral but algebraic continuation
allows to assign to a given real space-time sheets a p-adic space-time sheets if
the definition of space-time sheet involves algebraic relations between imbed-
ding space coordinates. There are also hopes that one can algebraically
continue the value of Kähler action to p-adic context if finite-dimensional
extensions are allowed.

d) Symmetries are discussed from p-adic point of view starting from the
identification via common rationals. Also possible p-adic generalizations
of Fourier analysis are considered. Besides a number theoretical approach,
group theoretical approach providing a direct generalization of the ordinary
Fourier analysis based on the utilization of exponent functions existing in al-
gebraic extensions containing some root of e and its powers up to ep−1 is dis-
cussed. Also the generalization of Fourier analysis based on the Pythagorean
phases is considered.

2 p-Adic numbers

2.1 Basic properties of p-adic numbers

p-Adic numbers (p is prime: 2,3,5,... ) can be regarded as a completion
of the rational numbers using a norm, which is different from the ordinary
norm of real numbers [21]. p-Adic numbers are representable as power ex-
pansion of the prime number p of form:

x =
∑

k≥k0

x(k)pk, x(k) = 0, ...., p− 1 . (1)

The norm of a p-adic number is given by
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|x| = p−k0(x) . (2)

Here k0(x) is the lowest power in the expansion of the p-adic number. The
norm differs drastically from the norm of the ordinary real numbers since it
depends on the lowest pinary digit of the p-adic number only. Arbitrarily
high powers in the expansion are possible since the norm of the p-adic num-
ber is finite also for numbers, which are infinite with respect to the ordinary
norm. A convenient representation for p-adic numbers is in the form

x = pk0ε(x) , (3)

where ε(x) = k + .... with 0 < k < p, is p-adic number with unit norm and
analogous to the phase factor exp(iφ) of a complex number.

The distance function d(x, y) = |x − y|p defined by the p-adic norm
possesses a very general property called ultra-metricity:

d(x, z) ≤ max{d(x, y), d(y, z)} . (4)

The properties of the distance function make it possible to decompose Rp

into a union of disjoint sets using the criterion that x and y belong to same
class if the distance between x and y satisfies the condition

d(x, y) ≤ D . (5)

This division of the metric space into classes has following properties:
a) Distances between the members of two different classes X and Y do

not depend on the choice of points x and y inside classes. One can therefore
speak about distance function between classes.

b) Distances of points x and y inside single class are smaller than dis-
tances between different classes.

c) Classes form a hierarchical tree.
Notice that the concept of the ultra-metricity emerged in physics from

the models for spin glasses and is believed to have also applications in biology
[25]. The emergence of p-adic topology as the topology of the effective space-
time would make ultra-metricity property basic feature of physics.
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2.2 p-Adic ultrametricity and divergence cancellation

p-Adic ultrametricity implies that the p-adic norm for a sum of p-adic num-
bers cannot be larger than the maximum of the p-adic norm for the sum-
mands. In p-adic QFT this has an overall important consequence: p-adic
loops sums over the discrete labels characterizing p-adic planewaves are
bounded from above. This means an automatic cancellation of the ultravi-
olet divergences. The finite volume of the p-adic space-time region in turn
implies the cancellation of the infrared divergences and the convergence of
the p-adic loops sums to a well defined limit.

It must be emphasized that the finiteness of the terms appearing in the
loop sums is not trivially true in the coordinate-space formulation of the
perturbation theory and it will be found that finiteness, or equivalently, the
p-adic pseudo-constancy of the coordinate space propagators, might neces-
sitate the natural p-adic cutoff provided by the CP2 radius below which the
assumption about the effective quantum average space-time representable
locally as a map M4

+ → CP2 fails. One must however emphasize that the
formulation of the theory is not yet so detailed that one could draw any
strong conclusions in this respect.

2.3 Extensions of p-adic numbers

Algebraic democracy suggests that all possible real algebraic extensions of
the p-adic numbers are possible. This conclusion is also suggested by var-
ious physical requirements, say the fact that the eigenvalues of a Hamilto-
nian representable as a rational or p-adic N ×N -matrix, being roots of N:th
order polynomial equation, in general belong to an algebraic extension of
rationals or p-adics. The dimension of the algebraic extension cannot be
interpreted as physical dimension. Algebraic extensions are characteristic
for cognitive physics and provide a new manner to code information. A
possible interpretation for the algebraic dimension is as a dimension for a
cognitive representation of space and would explain how it is possible to
mathematically imagine spaces with all possible dimensions although phys-
ical space-time dimension is four (TGD as a number theory vision suggest
that also space-time dimensions which are multiples of four are possible).
The idea of algebraic hologram and other ideas related to the physical inter-
pretation of the algebraic extensions of p-adics are discussed in the chapter
”TGD as a generalized number theory”.

It seems however that algebraic democracy must be extended to include
also transcendentals in the sense that finite-dimensional extensions involving
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also transcendental numbers are possible: for instance, Neper number e
defines a p-dimensional extension. It has become clear that these extensions
fundamental for understanding how p-adic physics as physics of cognition is
able to mimick real physics. The evolution of mathematical cognition can be
seen as a process in which p-adic space-time sheets involving increasing value
of p-adic prime p and increasing dimension of algebraic extension appear in
quantum jumps.

2.3.1 Recipe for constructing algebraic extensions

Real numbers allow only complex numbers as an algebraic extension. For
p-adic numbers algebraic extensions of arbitrary dimension are possible
[21]. The simplest manner to construct (n+1)-dimensional extensions is
to consider irreducible polynomials Pn(t) in Rp assumed to have rational
coefficients: irreduciblity means that the polynomial does not possess roots
in Rp so that one cannot decompose it into a product of lower order Rp

valued polynomials. This condition is equivalent with the condition with
irreducibility in the finite field G(p, 1), that is modulo p in Rp.

Denoting one of the roots of Pn(t) by θ and defining θ0 = 1 the general
form of the extension is given by

Z =
∑

k=0,..,n−1

xkθ
k . (6)

Since θ is root of the polynomial in Rp it follows that θn is expressible as a
sum of lower powers of θ so that these numbers indeed form an n-dimensional
linear space with respect to the p-adic topology.

Especially simple odd-dimensional extensions are cyclic extensions ob-
tained by considering the roots of the polynomial

Pn(t) = tn + εd ,

ε = ±1 . (7)

For n = 2m+1 and (n = 2m, ε = +1) the irreducibility of Pn(t) is guaranteed
if d does not possess n:th root in Rp. For (n = 2m, ε = −1) one must assume
that d1/2 does not exist p-adically. In this case θ is one of the roots of the
equation

tn = ±d , (8)
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where d is a p-adic integer with a finite number of pinary digits. It is
possible although not necessary to identify the roots as complex numbers.
There exists n complex roots of d and θ can be chosen to be one of the real
or complex roots satisfying the condition θn = ±d. The roots can be written
in the general form

θ = d1/nexp(iφ(m)), m = 0, 1, ...., n− 1 ,

φ(m) =
m2π

n
or

mπ

n
. (9)

Here d1/n denotes the real root of the equation θn = d. Each of the phase
factors φ(m) gives rise to an algebraically equivalent extension: only the
representation is different. Physically these extensions need not be equiv-
alent since the identification of the algebraically extended p-adic numbers
with the complex numbers plays a fundamental role in the applications. The
cases θn = ±d are physically and mathematically quite different.

2.3.2 p-Adic valued norm for numbers in algebraic extension

The p-adic valued norm of an algebraically extended p-adic number x can
be defined as some power of the ordinary p-adic norm of the determinant of
the linear map x :e Rn

p →e Rn
p defined by the multiplication with x: y → xy

N(x) = det(x)α , α > 0 .

(10)

Real valued norm can be defined as the p-adic norm of N(x). The require-
ment that the norm is homogenous function of degree one in the components
of the algebraically extended 2-adic number (like also the standard norm of
Rn ) implies the condition α = 1/n, where n is the dimension of the algebraic
extension.

The canonical correspondence between the points of R+ and Rp gener-
alizes in obvious manner: the point

∑
k xkθ

k of algebraic extension is identi-
fied as the point (x0

R, x1
R, ..., xk

R, .., ) of Rn using the pinary expansions of the
components of p-adic number. The p-adic linear structure of the algebraic
extension induces a linear structure in Rn

+ and p-adic multiplication induces
a multiplication for the vectors of Rn

+.
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2.3.3 Algebraic extension allowing square root of ordinary p-adic
numbers

The existence of a square root of an ordinary p-adic number is a common
theme in various applications of the p-adic numbers and for long time I
erratically believed that only this extension is involved with p-adic physics.
Despite this square root allowing extension is of central importance and
deserves a more detailed discussion.

a) The p-adic generalization of the representation theory of the ordinary
groups and Super Kac Moody and Super Virasoro algebras exists provided
an extension of the p-adic numbers allowing square roots of the ’real’ p-adic
numbers is used. The reason is that the matrix elements of the raising and
lowering operators in Lie-algebras as well as of oscillator operators typically
involve square roots. The existence of square root might play a key role in
various p-adic considerations.

b) The existence of a square root of a real p-adic number is also a nec-
essary ingredient in the definition of the p-adic unitarity and probability
concepts since the solution of the requirement that pmn = SmnS̄mn is ordi-
nary p-adic number leads to expressions involving square roots.

c) p-Adic length scales hypothesis states that the p-adic length scale is
proportional to the square root of p-adic prime.

d) Simple metric geometry of polygons involves square roots basically
via the theorem of Pythagoras. p-Adic Riemannian geometry necessitates
the existence of square root since the definition of the infinitesimal length
ds involves square root. Note however that p-adic Riemannian geometry
can be formulated as a mere differential geometry without any reference to
global concepts like lengths, areas, or volumes.

The original belief that square root allowing extensions of p-adic num-
bers are exceptional seems to be wrong in light of TGD as a generalized
number theory vision. All algebraic extensions of p-adic numbers a possible
and the interpretation of algebraic dimension of the extension as a physical
dimension is not the correct thing to do. Rather, the possibility of arbitrar-
ily high algebraic dimension reflects the ability of mathematical cognition
to imagine higher-dimensional spaces. Square root allowing extension of the
p-adic numbers is the simplest one imaginable, and it is fascinating that it
indeed is the dimension of space-time surface for p > 2 and dimension of
imbedding space for p = 2. Thus the square root allowing extensions deserve
to be discussed.

The results can be summarized as follows.
a) In p > 2 case the general form of extension is
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Z = (x + θy) +
√

p(u + θv) , (11)

where the condition θ2 = x for some p-adic number x not allowing square
root as a p-adic number. For p mod 4 = 3 θ can be taken to be imaginary
unit. This extension is natural for p-adication of space-time surface so that
space-time can be regarded as a number field locally. Imbedding space can
be regarded as a cartesian product of two 4-dimensional extensions locally.

b) In p = 2 case 8-dimensional extension is needed to define square roots.
The extension is defined by adding θ1 =

√−1 ≡ i, θ2 =
√

2, θ3 =
√

3 and
the products of these so that the extension can be written in the form

Z = x0 +
∑

k

xkθk +
∑

k<l

xklθkl + x123θ1θ2θ3 . (12)

Clearly, p = 2 case is exceptional as far as the construction of the conformal
field theory limit is considered since the structure of the representations of
Virasoro algebra and groups in general changes drastically in p = 2 case.
The result suggest that in p = 2 limit space-time surface and H are in same
relation as real numbers and complex numbers: space-time surfaces defined
as the absolute minima of 2-adiced Kähler action are perhaps identifiable as
surfaces for which the imaginary part of 2-adically analytic function in H
vanishes.

The physically interesting feature of p-adic group representations is that
if one doesn’t use

√
p in the extension the number of allowed spins for

representations of SU(2) is finite: only spins j < p are allowed. In p = 3
case just the spins j ≤ 2 are possible. If 4-dimensional extension is used
for p = 2 rather than 8-dimensional then one gets the same restriction for
allowed spins.

2.3.4 Finite-dimensional extensions involving transcendentals

The transcendentals e and π appear repeatedly in the basic formulas of cal-
culus and physics. Also logarithms are unavoidable. The idea that rational
numbers are common for all number fields suggests that the p-adic variant
of logarithm function should be well-defined and be equivalent with the real
logarithm in the subset of rationals. This boils down to the requirement
that the logarithms log(p), p prime exist for all primes.

The requirement that cognition has as its space-time correlates p-adic
space-time sheets corresponding to finite-dimensional extensions of p-adic
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numbers implies that the extensions involving transcendentals must be finite-
dimensional. This requirement discussed in the chapter ”Riemann Hypoth-
esis and Physics” looks extremely strong.

The intuitive expectation is that the extension containing e, π, and log-
arithms log(p) of primes is finite-dimensional for any prime p. Log(p) is
contained in the extension if π/log(p) is rational number for any prime p. π
is contained in the extension of π/log(log(....(log(π)...)) is rational number
for sum finite-fold logarithmic iterate of π. The detailed argument is dis-
cussed in the chapter ”Riemann Hypothesis and Physics” and here only a
rough sketch is given.

a) The extension containing e is finite-dimensional. The reason is that
ex exists as a p-adic series for |x|p < 1. Thus only the powers e, e2, ..., ep−1

need to be introduced and this gives to a p-dimensional extension.
b) One might think that π can be defined in the extension containing√−1 (
√−1 is an ordinary p-adic number for p mod 4 = 1) by using the

identity log(−1) =
√−1π and by writing log(−1) = log[(p − 1)/(1 − p)] =

1/2log[(p − 1)2] − log(1 − p) and by applying power series of logarithm
log(1 + y) converging for |y|p < 1. Unfortunately, the constraint exp(iπ) =
−1 is not satisfied for this identification of π. Thus the only hope is that
e/π is rational number or an analogous statement holds true for some higher
logarithmic iterate of π.

c) The logarithms log(q), q 6= p, can be defined by writing

log(q) = log[qd(p,q)]/d(p, q) ,

where d(p, q) is an integer such that qd(p,q) mod p = 1. The difficult part
is thus the identification of log(p) for Rp. This logarithm exists if log(p)/π
is a rational number. This number theoretical conjecture is unproven and
implies that log(x)/π is rational number for any rational number x. The
conjecture follows from the requirement that Riemann Zeta is a universal
function existing in the field of real numbers and in various p-adic number
fields and is algebraically continuable from its representation in the set of
rationals. This is achieved if the values of the functions piy appearing as
building blocks of Riemann Zeta ζ(x + iy) are algebraic numbers when y is
a rational number. A stronger condition is that y is rational number for the
zeros z = 1/2 + iy of Riemann zeta so that also zeros would be universal.

2.4 p-Adic Numbers and Finite Fields

Finite fields (Galois fields) consists of finite number of elements and allow
sum, multiplication and division. A convenient representation for the ele-
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ments of a finite field is as the roots of the polynomial equation tp
m − t =

0 mod p , where p is prime, m an arbitrary integer and t is element of a field
of characteristic p (pt = 0 for each t). The number of elements in a finite
field is pm, that is power of prime number and the multiplicative group of
a finite field is group of order pm − 1. G(p, 1) is just cyclic group Zp with
respect to addition and G(p,m) is in rough sense m:th Cartesian power of
G(p, 1) .

The elements of the finite field G(p, 1) can be identified as the p-adic
numbers 0, ..., p − 1 with p-adic arithmetics replaced with modulo p arith-
metics. The finite fields G(p,m) can be obtained from m-dimensional al-
gebraic extensions of the p-adic numbers by replacing the p-adic arith-
metics with the modulo p arithmetics. In TGD context only the finite fields
G(p > 2, 2) , p mod 4 = 3 and G(p = 2, 4) appear naturally. For p > 2,
p mod 4 = 3 one has: x + iy +

√
p(u + iv) → x0 + iy0 ∈ G(p, 2).

An interesting observation is that the unitary representations of the p-
adic scalings x → pkx k ∈ Z lead naturally to finite field structures. These
representations reduce to representations of a finite cyclic group Zm if x →
pmx acts trivially on representation functions for some value of m, m =
1, 2, ... Representation functions, or equivalently the scaling momenta k =
0, 1, ..., m − 1 labelling them, have a structure of cyclic group. If m 6= p is
prime the scaling momenta form finite field G(m, 1) = Zm with respect to
the summation and multiplication modulo m. Also the p-adic counterparts
of the ordinary plane waves carrying p-adic momenta k = 0, 1..., p−1 can be
given the structure of Finite Field G(p, 1): one can also define complexified
plane waves as square roots of the real p-adic plane waves to obtain Finite
Field G(p, 2).

3 What is the correspondence between p-adic and
real numbers?

There must be some kind of correspondence between reals and p-adic num-
bers. This correspondence can depend on context. In p-adic mass cal-
culations one must map p-adic mass squared values to real numbers in a
continuous manner and canonical identification is a natural guess. Presum-
ably also p-adic probabilities should be mapped to their real counterparts.
One can wonder whether p-adic valued S-matrix has any physical meaning
or whether one should assume that the elements of S-matrix are algebraic
numbers allowing interpretation as real or p-adic numbers: this would pose
extremely strong constraints on S-matrix. If one wants to introduce p-adic
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physics at space-time level one must be able to relate p-adic and real space-
time regions to each other and the identification along common rational
points of real and various p-adic variants of the imbedding space suggests
itself here.

3.1 Generalization of the number concept

The recent view about the unification of real and p-adic physics is based on
the generalization of number concept obtained by fusing together real and
p-adic number fields along common rationals.

3.1.1 Rational numbers as numbers common to all number fields

The unification of real physics of material work and p-adic physics of cogni-
tion and intentionality leads to the generalization of the notion of number
field. Reals and various p-adic number fields are glued along their com-
mon rationals (and common algebraic numbers too) to form a fractal book
like structure. Allowing all possible finite-dimensional extensions of p-adic
numbers brings additional pages to this ”Big Book”.

This generalization leads to a generalization of the notion of manifold
as a collection of a real manifold and its p-adic variants glued together
along common rationals. The precise formulation involves of course several
technical problems. For instance, should one glue along common algebraic
numbers and Should one glue along common transcendentals such as ep?
Are algebraic extensions of p-adic number fields glued together along the
algebraics too?

At space-time level the book like structure corresponds to the decompo-
sition of space-time surface to real and p-adic space-time sheets. This has
deep implications for the view about cognition. For instance, two points
infinitesimally near p-adically are infinitely distant in real sense so that cog-
nition becomes a cosmic phenomenon.

3.1.2 How large p-adic space-time sheets can be?

Space-time region having finite size in the real sense can have arbitrarily
large size in p-adic sense and vice versa. This raises a rather thought pro-
voking questions. Could the p-adic space-time sheets have cosmological or
even infinite size with respect to the real metric but have be p-adically
finite? How large space-time surface is responsible for the p-adic represen-
tation of my body? Could the large or even infinite size of the cognitive
space-time sheets explain why creatures of a finite physical size can invent
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the notion of infinity and construct cosmological theories? Could it be that
pinary cutoff O(pn) defining the resolution of a p-adic cognitive represen-
tation would define the size of the space-time region needed to realize the
cognitive representation?

In fact, the mere requirement that the neighborhood of a point of the
p-adic space-time sheet contains points, which are p-adically infinitesimally
near to it can mean that points infinitely distant from this point in the real
sense are involved. A good example is provided by an integer valued point
x = n < p and the point y = x + pm, m > 0: the p-adic distance of these
points is p−m whereas at the limit m → ∞ the real distance goes as pm

and becomes infinite for infinitesimally near points. The points n + y, y =∑
k>0 xkp

k, 0 < n < p, form a p-adically continuous set around x = n. In the
real topology this point set is discrete set with a minimum distance ∆x = p
between neighboring points whereas in the p-adic topology every point has
arbitrary nearby points. There are also rationals, which are arbitrarily near
to each other both p-adically and in the real sense. Consider points x = m/n,
m and n not divisible by p, and y = (m/n)× (1 + pkr)/(1 + pks), s = r + 1
such that neither r or s is divisible by p and k >> 1 and r >> p. The p-adic
and real distances are |x−y|p = p−k and |x−y| ' (m/n)/(r+1) respectively.
By choosing k and r large enough the points can be made arbitrarily close
to each other both in the real and p-adic senses.

The idea about astrophysical size of the p-adic cognitive space-time
sheets providing representation of body and brain is consistent with TGD
inspired theory of consciousness, which forces to take very seriously the idea
that even human consciousness involves astrophysical length scales.

3.1.3 Generalizing complex analysis by replacing complex num-
bers by generalized numbers

One general idea which results as an outcome of the generalized notion
of number is the idea of a universal function continuable from a function
mapping rationals to rationals or to a finite extension of rationals to a func-
tion in any number field. This algebraic continuation is analogous to the
analytical continuation of a real analytic function to the complex plane. Ra-
tional functions with rational coefficients are obviously functions satisfying
this constraint. Algebraic functions with rational coefficients satisfy this
requirement if appropriate finite-dimensional algebraic extensions of p-adic
numbers are allowed. Exponent function is such a function. Logarithm is
also such a function provided that the above mentioned number theoretic
conjecture holds true.

18



For instance, residy calculus might be generalized so that the value of an
integral along the real axis could be calculated by continuing it instead of
the complex plane to any number field via its values in the subset of rational
numbers forming the rim of the book like structure having number fields as
its pages. If the poles of the continued function in the finitely extended
number field allow interpretation as real numbers it might be possible to
generalize the residy formula. One can also imagine of extending residy
calculus to any algebraic extension. An interesting situation arises when the
poles correspond to extended p-adic rationals common to different pages of
the ”great book”. Could this mean that the integral could be calculated
at any page having the pole common. In particular, could a p-adic residy
integral be calculated in the ordinary complex plane by utilizing the fact
that in this case numerical approach makes sense.

3.2 Canonical identification

There exists a natural continuous map Id : Rp → R+ from p-adic numbers
to non-negative real numbers given by the ”pinary” expansion of the real
number for x ∈ R and y ∈ Rp this correspondence reads

y =
∑

k>N

ykp
k → x =

∑

k<N

ykp
−k ,

yk ∈ {0, 1, .., p− 1} . (13)

This map is continuous as one easily finds out. There is however a little
difficulty associated with the definition of the inverse map since the pinary
expansion like also desimal expansion is not unique (1 = 0.999...) for the
real numbers x, which allow pinary expansion with finite number of pinary
digits

x =
N∑

k=N0

xkp
−k ,

x =
N−1∑

k=N0

xkp
−k + (xN − 1)p−N + (p− 1)p−N−1

∑

k=0,..

p−k .

(14)

The p-adic images associated with these expansions are different
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y1 =
N∑

k=N0

xkp
k ,

y2 =
N−1∑

k=N0

xkp
k + (xN − 1)pN + (p− 1)pN+1

∑

k=0,..

pk

= y1 + (xN − 1)pN − pN+1 , (15)

so that the inverse map is either two-valued for p-adic numbers having ex-
pansion with finite number of pinary digits or single valued and discontinu-
ous and nonsurjective if one makes pinary expansion unique by choosing the
one with finite number of pinary digits. The finite number of pinary digits
expansion is a natural choice since in the numerical work one always must
use a pinary cutoff on the real axis.

3.2.1 Canonical identification is continuous map of non-negative
reals to p-adics

The topology induced by the canonical identification map in the set of posi-
tive real numbers differs from the ordinary topology. The difference is easily
understood by interpreting the p-adic norm as a norm in the set of the real
numbers. The norm is constant in each interval [pk, pk+1) (see Fig. 3.2.1)
and is equal to the usual real norm at the points x = pk: the usual linear
norm is replaced with a piecewise constant norm. This means that p-adic
topology is coarser than the usual real topology and the higher the value of
p is, the coarser the resulting topology is above a given length scale. This
hierarchical ordering of the p-adic topologies will be a central feature as far
as the proposed applications of the p-adic numbers are considered.

Ordinary continuity implies p-adic continuity since the norm induced
from the p-adic topology is rougher than the ordinary norm. This allows
two alternative interpretations. Either p-adic image of a physical systems
provides a good representation of the system above some pinary cutoff or
the physical system can be genuinely p-adic below certain length scale Lp

and become in good approximation real, when a length scale resolution Lp

is used in its description. The first interpretation is correct if canonical
identification is interpreted as a cognitive map. p-Adic continuity implies
ordinary continuity from right as is clear already from the properties of the
p-adic norm (the graph of the norm is indeed continuous from right). This
feature is one clear signature of the p-adic topology.
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Figure 1: The real norm induced by canonical identification from 2-adic
norm.

If one considers seriously the application of canonical identification to
basic quantum TGD one cannot avoid the question about the p-adic coun-
terparts of the negative real numbers. It has turned out that there is no
satisfactory manner to circumvent the fact that canonical images of p-adic
numbers are naturally non-negative. The correct conclusion is that canon-
ical interpretation applies only in p-adic thermodynamics, where it is used
only in the direction Rp → R and real images are naturally non-negative
numbers.

3.2.2 The notion of p-adic linearity

The linear structure of the p-adic numbers induces a corresponding structure
in the set of the non-negative real numbers and p-adic linearity in general
differs from the ordinary concept of linearity. For example, p-adic sum is
equal to real sum only provided the summands have no common pinary
digits. Furthermore, the condition x +p y < max{x, y} holds in general
for the p-adic sum of the real numbers. p-Adic multiplication is equivalent
with the ordinary multiplication only provided that either of the members
of the product is power of p. Moreover one has x ×p y < x × y in general.
An interesting possibility is that p-adic linearity might replace the ordinary
linearity in some strongly nonlinear systems so these systems would look
simple in the p-adic topology.
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3.2.3 Does canonical identification define a generalized norm?

Canonical correspondence is quite essential in TGD:eish applications. Canon-
ical identification makes it possible to define a p-adic valued definite integral.
Canonical identification is in a key role in the successful predictions of the
elementary particle masses. Canonical identification makes also possible to
understand the connection between p-adic and real probabilities. These and
many other succesfull applications suggests that canonical identification is
involved with some deeper mathematical structure. The following inequali-
ties hold true:

(x + y)R ≤ xR + yR ,

|x|p|y|R ≤ (xy)R ≤ xRyR , (16)

where |x|p denotes p-adic norm. These inequalities can be generalized to
the case of (Rp)n (a linear vector space over the p-adic numbers).

(x + y)R ≤ xR + yR ,

|λ|p|y|R ≤ (λy)R ≤ λRyR , (17)

where the norm of the vector x ∈ Tn
p is defined in some manner. The case

of Euclidian space suggests the definition

(xR)2 = (
∑
n

x2
n)R . (18)

These inequalities resemble those satisfied by the vector norm. The only
difference is the failure of linearity in the sense that the norm of a scaled
vector is not obtained by scaling the norm of the original vector. Ordinary
situation prevails only if the scaling corresponds to a power of p.

These observations suggests that the concept of a normed space or Ba-
nach space might have a generalization and physically the generalization
might apply to the description of some nonlinear systems. The nonlinearity
would be concentrated in the nonlinear behavior of the norm under scaling.

3.3 The interpretation of canonical identification

During the development of p-adic TGD two seemingly mutually inconsistent
competing identifications of reals and p-adics have caused a lot of painful
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tension. Canonical identification provides one possible identification map
respecting continuity whereas the identification of rationals as points com-
mon to p-adics and reals respects algebra of rationals. The resolution of
the tension came from the realization that canonical identification naturally
maps the predictions of p-adic probability theory and thermodynamics to
real numbers. Canonical identification also maps p-adic cognitive represen-
tations to symbolic ones in the real world world or vice versa. The identi-
fication by common rationals is in turn the correspondence implied by the
generalized notion of number and natural in the construction of quantum
TGD proper.

3.3.1 Canonical identification maps the predictions of the p-adic
probability calculus and statistical physics to real numbers

p-Adic mass calculations based on p-adic thermodynamics were the first
and rather successful application of the p-adic physics (see the four chapters
in [6]. The essential element of the approach was the replacement of the
Boltzmann weight e−E/T with its p-adic generalization pL0/Tp , where L0 is
the Virasoro generator corresponding to scaling and representing essentially
mass squared operator instead of energy. Tp is inverse integer valued p-adic
temperature. The predicted mass squared averages were mapped to real
numbers by canonical identification.

One could also construct a real variant of this approach by considering
instead of the ordinary Boltzman weights the weights p−L0/Tp . The quan-
tization of temperature to Tp = log(p)/n would be a completely ad hoc
assumption. In the case of real thermodynamics all particles are predicted
to be light whereas in case of p-adic thermodynamics particle is light only
if the ratio for the degeneracy of the lowest massive state to the degener-
acy of the ground state is integer. Immense number of particles disappear
from the spectrum of light particles by this criterion. For light particles the
predictions are same as of p-adic thermodynamics in the lowest non-trivial
order but in the next order deviations are possible.

The success of the p-adic mass calculations led to the idea that canoni-
cal identification generalizes also to the space-time level and appears even in
the formulation of fundamental quantum TGD. However, when real space-
time surfaces (absolute minima of Kähler action) are mapped by I−1 to
their p-adic counterparts, one encounters several problems. The inverse of
the canonical identification is two-valued; canonical identification map is
not defined for negative real numbers; canonical identification is not mani-
festly General Coordinate Invariant concept; the direct canonical image of
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the space-time surface is not p-adically differentiable. What is needed is
smooth surface perhaps satisfying the p-adic counterparts of the field equa-
tions associated with the absolute minimization of the Kähler action.

Already the problems with the general covariance definitely exclude
canonical identification and its variants at space-time level, and that the
generalization of the number concept provides the correct approach. Even
such a simple fact that canonical images are always non-negative suggests
that the applications must be such that this restriction is naturally satisfied.
Canonical identification can indeed be used to map the predictions of the
p-adic valued statistical physics to real numbers. For instance, p-adic prob-
abilities and the p-adic entropy can be mapped to real numbers by canonical
identification. The general idea is that a faithful enough cognitive represen-
tation of the real physics can by the number theoretical constraints involved
make predictions, which would be extremely difficult to deduce from real
physics.

3.3.2 Canonical identification as cognitive map mapping real ex-
ternal world to p-adic internal world or vice versa

It is interesting to look what canonical identification does assuming that
rationals are common to p-adics and reals. Canonical identication maps
the rationals q = m/n, n not divisible by p in the range [1,∞] to the
range [0, 1] and vice versa. One can say that real axis is defined ’inside’
[0, 1] and ’outside’ [1,∞] and canonical identification maps these regions to
each other in a p-adically continuous manner. This suggests that canonical
identification and its generalizations could provide basic building blocks for
cognitive maps mapping external world to a cognitive representation inside
brain. Symbolic representations of thoughts in real world would in turn
involve canonical identification in the reverse sense.

The physical counterpart of the pinary cutoff is very natural. The larger
the pinary cutoff pn is, the larger the real counterpart of the p-adic image
via the correspondence by common rationals is. What is small p-adically
is large in real sense at the level of integers. The better the resolution of
the cognitive map is, the larger the p-adic space-time sheet giving rise to
the representation is. For the p-adic primes associated with elementary par-
ticles already the pinary cutoff O(p3) = 0 requires macroscopic and even
astrophysical length scales. The idea that our consciousness might involve
astrophysical length scales via p-adic cognitive representations, is in accor-
dance with the views forced by TGD inspired theory of consciousness but
using considerations based on quite different premises [H8].
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3.4 Variants of canonical identification

One can also imagine variants of canonical identification.

3.4.1 The variant of canonical identification commuting with di-
vision of integers

The basic problems of canonical identification is that it does not respect
unitarity. For this reason it is not well suited for relating p-adic and real
scattering amplitudes. The problem of the correspondence via direct ratio-
nals is that it does not respect continuity.

A compromize between algebra and topology is achieved by using a mod-
ification of canonical identification IRp→R defined as I1(r/s) = I(r)/I(s). If
the conditions r ¿ p and s ¿ p hold true, the map respects algebraic oper-
ations and also unitarity and various symmetries. It seems that this option
must be used to relate p-adic transition amplitudes to real ones and vice
versa [F5]. In particular, real and p-adic coupling constants are related by
this map. Also some problems related to p-adic mass calculations find a nice
resolution when I1 is used.

This variant of canonical identification is not equivalent with the original
one using the infinite expansion of q in powers of p since canonical identifi-
cation does not commute with product and division. The variant is however
unique in the recent context when r and s in q = r/s have no common
factors. For integers n < p it reduces to direct correspondence.

Generalized numbers would be regarded in this picture as a generalized
manifold obtained by gluing different number fields together along rationals.
Instead of a direct identification of real and p-adic rationals, the p-adic
rationals in Rp are mapped to real rationals (or vice versa) using a variant
of the canonical identification IR→Rp in which the expansion of rational
number q = r/s =

∑
rnpn/

∑
snpn is replaced with the rational number

q1 = r1/s1 =
∑

rnp−n/
∑

snp−n interpreted as a p-adic number:

q =
r

s
=

∑
n rnpn

∑
m snpn

→ q1 =
∑

n rnp−n

∑
m snp−n

. (19)

Rp1 and Rp2 are glued together along common rationals by an the composite
map IR→Rp2

IRp1→R.
This variant of canonical identification seems to be excellent candidate

for mapping the predictions of p-adic mass calculations to real numbers and
also for relating p-adic and real scattering amplitudes to each other [F5].
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3.4.2 Phase preserving canonical identification

Before the emergence of new view about p-adic physics, the above listed
problems forced to consider a modification of the canonical identification
map and several options have been considered. The requirement of General
Coordinate Invariance finally led to what seemed to be a unique solution
to these problems. One must define canonical identification in preferred
imbedding space coordinates: if preferred coordinates are not unique, the
transformations between the preferred coordinates systems must commute
with the modified canonical identification. Although this mapping is not
relevant for the definition of fundamental theory, it might make sense if
taken as a map defining cognitive representations at the level of Schröndinger
amplitudes. In particular, the beautiful mathematical properties of this map
and the direct connection with quantum measurement theory, suggest that
one should not not keep mind open for possible applications of this map in
some future theory of cognition.

The preferred coordinates are Minkowski coordinates (m0,m3,m1,m2))
and complex coordinates of CP2 transforming linearly under certain Cartan
sugroup U(1) × U(1) determined by the surface Y 3: these coordinates are
determined modulo rotations of subgroup SO(2) × U(1) × U(1) of Cartan
subgroup of SO(3, 1)× SU(3) acting as multiplication by a phase factor in
case of m1 + im2 and CP2 complex coordinates. Lorentz boosts in Cartan
subgroup of SO(3, 1) act as multiplication by hyperbolic ’phase factor’ in
case of the coordinate pair (m0,m3) ≡ a(cosh(η), sinh(η)). The mapping
commutes with these transformations if the phase factors are mapped as such
to their p-adic counterparts, that is without canonical identification. The
mapping is only possible for rational complex phase factors: they correspond
to Pythagorean triangles. The coordinate a =

√
(m0)2 − (m3)2 and moduli

of the complex coordinates are mapped using canonical identification.
Since phase preserving canonical identification is discontinuous in phase

degrees of freedom, the image of the space-time surface induced by the map-
ping of H is in the generic case discrete and does not form a subset of any
p-adic 4-surface. One can however require that p-adic space-time surface
is a smooth completion of a minimal pinary cutoff of the image fixed by
the requirement that p-adic counterparts of the field equations guaranteing
absolute minimization of the Kähler action are satisfied. The phenomenon
of p-adic pseudo constants and nondeterminism of Kähler action give good
hopes of achieving this. There is a direct connection with quantum measure-
ment theory since the transformations of Cartan algebra commuting with
the canonical identification map corresponds to a maximal set of commuting
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observables in the algebra of the isometry charges.
Although it seems that phase preserving canonical identification might

not be useful at the level of imbdeding space, it can be applied to map real
spinor fields to their p-adic counterparts. The natural requirement is that
the modulus squared is mapped continuously in the cognitive map so that
canonical identification is the natural possibility. The phases of eigenstate
basis represent typically quantum numbers such as momentum components
and spin. Therefore Pythagorean phases are a natural representation of the
phase factors and must be mapped as such to their p-adic counterparts.
Thus phase preserving canonical identification is natural for spinor fields
and Schödinger amplitudes.

4 p-Adic differential and integral calculus

p-Adic differential calculus differs from its real counterpart in that piece-
wise constant functions depending on a finite number of pinary digits have
vanishing derivative. This property implies p-adic nondeterminism, which
has natural interpretation as making possible imagination if one identifies
p-adic regions of space-time as cognitive regions of space-time.

One of the stumbling blocks in the attempts to construct p-adic physics
have been the difficulties involved with the definition of the p-adic version
of a definite integral. There are several alternative options as how to define
p-adic definite integral and it is quite possible that there is simply not a
single correct version since p-adic physics itself is a cognitive model.

a) The first definition of the p-adic integration is based on three ideas.
The ordering for the limits of integration is defined using canonical corre-
spondence. x < y holds true if xR < yR holds true. The integral functions
can be defined for Taylor series expansion by defining indefinite integral as
the inverse of the differentiation. If p-adic pseudoconstants are present in
the integrand one must divide the integration range into pieces such that
p-adic integration constant changes its value in the points where new piece
begins.

b) Second definition is based on p-adic Fourier analysis based on the
use of p-adic planewaves constructed in terms of Pythagorean phases. This
definition is especially attractive in the definition of p-adic QFT limit and is
discussed in detail later in the section ’p-Adic Fourier analysis’. In this case
the integral is defined in the set of rationals and the ordering of the limits
of integral is therefore not a problem.

c) For p-adic functions which are direct canonical images of real func-
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tions, p-adic integral can be defined also as a limit of Riemann sum and
this in principle makes the numerical evaluation of p-adic integrals possible.
As found in the chapter ’Mathematical Ideas’, Riemann sum representa-
tion leads to an educated guess for an exact formula for the definite integral
holding true for functions which are p-adic counterparts of real-continuous
functions and for p-adically analytic functions. The formula provides a cal-
culational recipe of p-adic integrals, which converges extremely rapidly in
powers of p. Ultrametricity guarantees the absence of divergences in arbi-
trary dimensions provided that integrand is a bounded function. It however
seems that this definition of integral cannot hold true for the p-adically
differentiable function whose real images are not continuous.

4.1 p-Adic differential calculus

The rules of the p-adic differential calculus are formally identical to those of
the ordinary differential calculus and generalize in a trivial manner for the
algebraic extensions.

The class of the functions having vanishing p-adic derivatives is larger
than in the real case: any function depending on a finite number of positive
pinary digits of p-adic number and of arbitrary number of negative pinary
digits has a vanishing p-adic derivative. This becomes obvious, when one
notices that the p-adic derivative must be calculated by comparing the val-
ues of the function at nearby points having the same p-adic norm (here is
the crucial difference with respect to real case!). Hence, when the increment
of the p-adic coordinate becomes sufficiently small, p-adic constant doesn’t
detect the variation of x since it depends on finite number of positive p-adic
pinary digits only. p-Adic constants correspond to real functions, which are
constant below some length scale ∆x = 2−n. As a consequence p-adic differ-
ential equations are non-deterministic: integration constants are arbitrary
functions depending on a finite number of the positive p-adic pinary digits.
This feature is central as far applications are considered and leads to the
interpretation of p-adic physics as physics of cognition which involves imag-
ination in essential manner. The classical non-determinism of the Kähler
action, which is the key feature of quantum TGD, corresponds in a natural
manner to the non-determinism of volition in macroscopic length scales.

p-analytic maps g : Rp → Rp satisfy the usual criterion of differentiability
and are representable as power series

g(x) =
∑

k

gkx
k . (20)
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Also negative powers are in principle allowed.

4.2 p-Adic fractals

p-Adically analytic functions induce maps R+ → R+ via the canonical iden-
tification map. The simplest manner to get some grasp on their properties
is to plot graphs of some simple functions (see Fig. 4.2 for the graph of
p-adic x2 and Fig. 4.2 for the graph of p-adic 1/x). These functions have
quite characteristic features resulting from the special properties of the p-
adic topology. These features should be universal characteristics of cognitive
representations and should allow to deduce the value of the p-adic prime p
associated with a given cognitive system.

a) p-Analytic functions are continuous and differentiable from right: this
peculiar asymmetry is a completely general signature of the p-adicity. As
far as time dependence is considered, the interpretation of this property
as a mathematical counterpart of the irreversibility looks attractive. This
suggests that the transition from the reversible microscopic dynamics to
irreversible macroscopic dynamics could correspond to the transition from
the ordinary topology to an effective p-adic topology.

b) There are large discontinuities associated with the points x = pn.
This implies characteristic threshold phenomena. Consider a system whose
output f(n) is a function of input, which is integer n. For n < p nothing
peculiar happens but for n = p the real counterpart of the output becomes
very small for large values of p. In the bio-systems threshold phenomena
are typical and p-adicity might be the key to their understanding. The
discontinuities associated with the powers of p = 2 are indeed encountered
in many physical situations. Auditory experience has the property that a
given frequency ω0 and its multiples 2kω0, octaves, are experienced as the
same frequency, this suggests that the auditory response function for a given
frequency ω0 is a 2-adicallly analytic function. Titius-Bode law states that
the mutual distances of planets come in powers of 2, when suitable unit of
distance is used. In turbulent systems period doubling spectrum has peaks
at frequencies ω = 2kω0.

c) A second signature of the p-adicity is ”p-plicity” appearing in the
graph of simple p-analytic functions. As an example, consider the graph of
the p-adic x2 demonstrating clearly the decomposition into p steps at each
interval [pk, pk+1).

d) The graphs of the p-analytic functions are in general ordered frac-
tals as the examples demonstrate. For example, power functions xn are
self-similar (the values of the function at some any interval (pk, pk+1) deter-
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mines the function completely) and in general p-adic xn with nonnegative
(negative) n is smaller (larger) than real xn expect at points x = pn as
the graphs of p-adic x2 and 1/x show (see Fig. 4.2 and 4.2) These proper-
ties are easily understood from the properties of the p-adic multiplication.
Therefore the first guess for the behavior of a p-adically analytic function
is obtained by replacing x and the coefficients gk with their p-adic norms:
at points x = pn this approximation is exact if the coefficients of the power
series are powers of p. This step function approximation is rather reasonable
for simple functions such as xn as the figures demonstrate. Since p-adically
analytic function can be approximated with f(x) ∼ f(x0) + b(x − x0)n or
as a(x− x0)n (allowing non-analyticity at x0) around any point the fractal
associated with p-adically analytic function has universal geometrical form
in sufficiently small length scales.

p-Adic analyticity is well defined for the algebraic extensions of Rp, too.
The figures 4.2 and 4.2 visualize the behavior of the real and imaginary parts
of the 2-adic z2 function as a function of the real x and y coordinates in the
parallelpiped I2,I = [1 + 2−7, 2− 2−7]. An interesting possibility is that the
order parameters describing various phases of some physical systems are p-
adically differentiable functions. The p-analyticity would therefore provide
a means for coding the information about ordered fractal structures.

The order parameter could be one coordinate component of a p-adically
analytic map Rn → Rn, n = 3, 4. This is analogous to the possibility to
regard the solution of the Laplace equation in two dimensions as a real or
imaginary part of an analytic function. A given region V of the order pa-
rameter space corresponds to a given phase and the volume of the ordinary
space occupied by this phase corresponds to the inverse image g−1(V ) of V .
Very beautiful images are obtained if the order parameter is the the real
or imaginary part of a p-analytic function f(z). A good example is p-adic
z2 function in the parallelpiped [a, b] × [a, b], a = 1 + 2−9, b = 2 − 29 of
C-plane. The value range of the order parameter can be divided into, say,
16 intervals of the same length so that each interval corresponds to a unique
color. The resulting fractals possess features, which probably generalize to
higher-dimensional extensions.
a) The inverse image is an ordered fractal and possesses lattice/cell like
structure, with the sizes of cells appearing in powers of p. Cells are however
not identical in analogy with the differentiation of the biological cells.
b) p-Analyticity implies the existence of a local vector valued order param-
eter given by the p-analytic derivative of g(z): the geometric structure of
the phase portrait indeed exhibits the local orientation clearly.

A second representation of the fractals is obtained by dividing the value
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Figure 2: p-Adic x2 function for some values of p

range of z into a finite number of intervals and associating different color to
each interval. In a given resolution this representation makes obvious the
presence of 0, 1- and 2-dimensional structures not obvious from the graph
representation used in the figures of this book.

These observations suggests that p-analyticity might provide a means to
code the information about ordered fractal structures in the spatial behavior
of order parameters (such as enzyme concentrations in bio-systems). An
elegant manner to achieve this is to use purely real algebraic extension for
3-space coordinates and for the order parameter: the image of the order
parameter Φ = φ1 +φ2θ+φ3θ

2 under the canonical identification is real and
positive number automatically and might be regarded as concentration type
quantity.
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Figure 3: p-Adic 1/x function for some values of p
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4.3 p-Adic integral calculus

The basic problems of the integration with p-adic values of integral are
caused by the facts that p-adic numbers are not well-ordered and by the
properties of p-adic norm. The general idea that p-adic physics can mimic
real physics only at the algebraic level, leads to the idea that p-adic in-
tegration could be algebraized whereas numerical approaches analogous to
Riemann sum are not possible. In the following three examples are discussed.

a) Definite integral can be defined using integral function and by defining
integration limits via canonical identification: the drawback is the loss of
general coordinate invariance. A more elegant general coordinate invariant
approach is based on the identification of rationals as common to both reals
and p-adics. This works for rational valued integration limits.

b) Residy calculus allows to realize integrals of analytic functions over
closed curves of complex plane. The generalization of the residy calculus
makes possible to realize conformal invariance at elementary particle hori-
zons which are metrically 2-dimensional and allow conformal invariance and
has also p-adic counterpart.

c) The perturbative series using Gaussian integration is the only to per-
form in practice infinite-dimensional functional integrals and being purely
algebraic procedure, allows a straightforward p-adic generalization. This is
the only option for p-adicizing configuration space integral.

4.3.1 Definition of the definite integral using integral function
concept and canonical identification or identification by
common rationals

The concept of the p-adic definite integral can be defined for functions
Rp → C [19] using translationally invariant Haar measure for Rp. In present
context one is however interested in definining a p-adic valued definite inte-
gral for functions f : Rp → Rp: target and source spaces could of course be
also some some algebraic extensions of the p-adic numbers.

What makes the definition nontrivial is that the ordinary definition as
the limit of a Riemann sum doesn’t seem to work: it seems that Riemann
sum approaches to zero in the p-adic topology since, by ultra-metricity, the
p-adic norm of a sum is never larger than the maximum p-adic norm for the
summands. The second difficulty is related to the absence of a well-ordering
for the p-adic numbers. The problems might be avoided by defining the
integration essentially as the inverse of the differentiation and using the
canonical correspondence to define ordering for the p-adic numbers. More
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generally, the concepts of the form, cohomology and homology are crucially
based on the concept of the boundary. The concept of boundary reduces
to the concept of an ordered interval and canonical identification makes it
indeed possible to define this concept.

The definition of the p-adic integral functions defining integration as
inverse of the differentiation is straightforward and one obtains just the
generalization of the standard calculus. For instance, one has

∫
zn = zn+1

(n+1) +
C and integral of the Taylor series is obtained by generalizing this. One
must however notice that the concept of integration constant generalizes:
any function Rp → Rp depending on a finite number of pinary digits only,
has a vanishing derivative.

Consider next the definite integral. The absence of the well ordering
implies that the concept of the integration range (a, b) is not well defined
as a purely p-adic concept. As already mentioned there are two solutions of
the problem.

a) The identification of rational numbers as common to both reals and
p-adics allows to order the integration limits when the end points of the
integral are rational numbers. This is perhaps the most elegant solution of
the problem since it is consistent with the restricted general coordinate in-
variance allowing rational function based coordinate changes. This approach
works for rational functions with rational coefficients and more general func-
tions if algebraic extension or extension containing transcendentals like e and
logarithms of primes are allowed. The extension containing e, π, and log(p)
is finite-dimensional if e/π and π/log(p) are rational numbers for all primes
p. Essentially algebraic continuation of real integral to p-adic context is in
question.

b) An alternative resolution of the problem is based on the canonical
identification. Consider p-adic numbers a and b. It is natural to define a
to be smaller than b if the canonical images of a and b satisfy aR < bR.
One must notice that aR = bR does not imply a = b, since the inverse of
the canonical identification map is two-valued for the real numbers having
a finite number of pinary digits. For two p-adic numbers a, b with a < b,
one can define the integration range (a, b) as the set of the p-adic numbers
x satisfying a ≤ x ≤ b or equivalently aR ≤ xR ≤ bR. For a given value of
xR with a finite number of pinary digits, one has two values of x and x can
be made unique by requiring it to have a finite number of pinary digits.

One can define definite integral
∫ b
a f(x)dx formally as

∫ b

a
f(x)dx = F (b)− F (a) , (21)
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where F (x) is integral function obtained by allowing only ordinary integra-
tion constants and bR > aR holds true. One encounters however a problem,
when aR = bR and a and b are different. Problem is avoided if the inte-
gration limits are assumed to correspond to p-adic numbers with a finite
number of pinary digits.

One could perhaps relate the possibility of the p-adic integration con-
stants depending on finite number of pinary digits to the possibility to de-
compose integration range [aR, bR] as a = x0 < x1 < ....xn = b and to select
in each subrange [xk, xk+1] the inverse images of xk ≤ x ≤ xk+1, with x
having finite number of pinary digits in two different manners. These dif-
ferent choices correspond to different integration paths and the value of the
integral for different paths could correspond to the different choices of the
p-adic integration constant in integral function. The difference between a
given integration path and ’standard’ path is simply the sum of differences
F (xk)− F (yk), (xk)R = (yk)R.

This definition has several nice features.
a) The definition generalizes in an obvious manner to the higher dimen-

sional case. The standard connection between integral function and definite
integral holds true and in the higher-dimensional case the integral of a total
divergence reduces to integral over the boundaries of the integration vol-
ume. This property guarantees that p-adic action principle leads to same
field equations as its real counterpart. It this in fact this property, which
drops other alternatives from the consideration.

b) The basic results of the real integral calculus generalize as such to the
p-adic case. For instance, integral is a linear operation and additive as a set
function.

The ugly feature is the loss of the general coordinate invariance due to
the fact that canonical identification does not commute with cooordinate
changes (except scalings by powers of p) and it seems that one cannot use
canonical identification at the fundamental level to define definite integrals.

4.3.2 Definite integrals in p-adic complex plane using residy cal-
culus

Residy calculus allows to calculate the integrals
∮
C f(z)dz around complex

curves as sums over poles of the function inside the curve:

∮
f(z)dz = i2π

∑

k

Res(f(zk)) , (22)
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where Res(f(zk)) at pole z = zk is defined as Res(f(zk)) = limz→zk
(z −

zk)f(z). This definition applies in case of 2-dimensional
√−1-containing

algebraic extension of p-adic numbers (p mod 4 = 3) but its seems that this
is not relevant for quantum TGD.

Quaternion conformal invariance corresponds to the conformal invari-
ance associated with topologically 3-dimensional elementary particle hori-
zons surrounding wormhole contacts which have Euclidian signature of in-
duced metric. The induced metric is degenerate at the elementary particle
horizon so that these surfaces are metrically two-dimensional. This implies
a generalization of conformal invariance analogous to that at light cone cone
boundary. In particular, a subfield of quaternions isomorphic with complex
numbers is selected. One expects that residy calculus generalizes.

Elementary particle horizons are defined by a purely algebraic condition
stating that the determinant of the induced metric vanishes, and thus the
notion makes sense for p-adic space-time sheets too. Also residy calculus
should make sense for all algebraic extensions of p-adic numbers and the
algebra of quaternion conformal invariance would generalize to the p-adic
context too. Note however that the notion of p-adic quaternions does not
make sense: the reason is that p-adic Euclidian length squared for a non-
vanishing p-adic quaternion can vanish so that the inverse of quaternion is
not well defined always. In the set of rational numbers this failure does not
however occur and this might be enough for p-adicization to work.

4.3.3 Definite integrals using Gaussian perturbation theory

In quantum field theories functional integrals are defined by Gaussian per-
turbation theory. For real infinite-dimensional Gaussians the procedure has
a rigorous mathematical basis deriving from measure theory. For the imag-
inary infinite-dimensional Gaussians defining the Feynman path integrals of
quantum field theory the rigorous mathematical justification is lacking.

In TGD framework the integral over the configuration space of three
surface can be reduced to a real Gaussian perturbation theory around the
maxima of Kähler function. The integration is over quantum fluctuating
degrees of freedom defining infinite-dimensional symmetric space for given
values of zero modes. According to the more detailed arguments about how
to construct p-adic counterpart of real configuration space physics described
in the chapter ”Construction of Quantum Theory”, the following conjectures
are trued.

a) The symmetric space property implies that there is only one maximum
of Kähler function for given values of zero modes.
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b) The generalization of Duistermaat-Heecke theorem holding true in
finite-dimensional case suggests that by symmetric space property the inte-
gral of the exponent of Kähler gives just the exponent of Kähler function
at the maximum and Gaussian determinant and metric determinant cancel
each other.

c) The fact that free Gaussian field theory corresponds to a flat sym-
metric space inspires the hypothesis that S-matrix elements involving con-
figuration space spinor fields in the representations of the isometry group
reduce to those given by free field theory with propagator defined by the
inverse of the configuration space covariant Kähler metric evaluated in the
tangent space basis defined by the isometry currents at the maximum of
Kähler function. This implies that there is no perturbation series which
would spoil any hopes about proving the rationality. The reduction to a
free field theory does not make quantum TGD non-interacting since inter-
actions are described as topologically (as decays and fusions of 3-surfaces)
rather than algbraically as non-linearities of local action.

d) If the exponent function is a rational function with rational coefficients
in the sense that for the points of configuration space having finite number
of rational valued coordinates (also zero modes), then the exponent eKmax

is a rational number for rational values of zero modes. From the rationality
of the exponent of the Kähler function follows the rational valuedness of the
matrix elements of the metric. The undeniably very optimistic conclusion
is that for rational values of the zero modes the S-matrix elements would be
rational valued or have values if finite extension of rationals, so that they
could be continued to the p-adic sectors of the configuration space. The
S-matrix would have the same form in all number fields.

e) One could also interpret the outcome as an algebraic continuation
of the rational quantum physics to real and p-adic physics. Configuration
space-integrals can be thought of as being performed in the rational con-
figuration space. Of course, one can define also ordinary integrals over Rn

numerically using Riemann sums by considering the division of the integra-
tion region to very small n-cubes for which the sides have rational-number
valued lengths and such that the value of the function is taken at rational
valued point inside each cube.

The finite-dimensional real one-dimensional Gaussian exp(−ax2/2) pro-
vides a natural testing ground for this rather speculative picture. The inte-
gral of the Gaussian is (2π)1/2/

√
a: in n-dimensional case where a is replaced

by a quadratic form defined by a matrix A one obtains (2π)n/2/
√

det(A) in
n-dimensional case. The integral of a function exp(−ax2 + kxn)xk reduces
to a perturbation series as sum of graphs containing single vertex contain-
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ing k lines and arbitrary number of vertices containing n lines and endowed
with a factor k, and assigning with the lines the propagator factor 1/a. For
n-dimensional case the propagator factor would be inverse of the matrix A.

The result makes sense in the p-adic context if a and k are rational
numbers. In the n-dimensional case matrix A and the coefficients defining
the polynomial defining the interaction term must be rational numbers. The
only problematic factor is the power of 2π, which seems to require algebraic
extension containing π. Of course, one could define the normalization of the
functional integral by dividing it by (2π)n/2 to get rid of this fact. In the
definition of S-matrix elements this normalization factor always disappears
so that this problem has no physical significance.

In the case of free scalar quantum field theory n-point functions the per-
turbation theory are simply products of 2-point functions defined by the
inverse of the infinite-dimensional Gaussian matrix. For plane wave basis
for scalar field labelled by 4-momentum k the inverse of the Gaussian ma-
trix reduces to the propagator (i/(k2 + iε) for scalar field), which is rational
function of the square of 4-momentum vector. In case of interacting quan-
tum field the infinite summation over graphs spoils the hopes of obtaining
end result which could be proven to be rational valued for rational values
of incoming and outgoing four-momenta. The loop integrals are source of
divergence problems and also number-theoretically problematic.

5 p-Adic symmetries and Fourier analysis

5.1 p-Adic symmetries and generalization of the notion of
group

The most basic questions physicist can ask about the p-adic numbers are
related to symmetries. It seems obvious that the concept of a Lie-group
generalizes: nothing prevents from replacing the real or complex represen-
tation spaces associated with the definitions of the classical Lie-groups with
the linear space associated with some algebraic extension of the p-adic num-
bers: the defining algebraic conditions, such as unitarity or orthogonality
properties, make sense for the algebraically extended p-adic numbers, too.

For orthogonal groups one must replace the ordinary real inner prod-
uct with the inner product

∑
k X2

k with a Cartesian power of a purely real
extension of p-adic numbers. In the unitary case one must consider the com-
plexification of a Cartesian power of a purely real extension with the inner
product

∑
Z̄kZk. Here p mod 4 = 3 is required. It should be emphasized

however that the p-adic inner product differs from the ordinary one so that
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the action of, say, p-adic counterpart of a rotation group in R3
p induces in

R3 an action, which need not have much to do with ordinary rotations so
that the generalization is physically highly nontrivial. Extensions of p-adic
numbers also mean extreme richness of structure.

The exponentiation t → exp(tJ) of the Lie-algebra element J is a central
element of Lie group theory and allows to coordinatize that elements of
Lie group by mapping tangent space points the points representing group
elements. Without algebraic extensions involving e or its roots one can
exponentiate only the group parameters t satisfying |t|p < 1. Thus the
values of the exponentiation parameter which are too small/large in real/p-
adic sense are not possible and one can say that the standard p-adic Lie
algebra is a ball with radius |t|p = 1/p.

The study of ordinary one-dimensional translations gives an idea about
what it is involved. For finite values of the p-adic integer t the exponentiated
group element corresponds in the case of translation group to a power of e
so that the points reached by exponentiation cannot correspond to rational
points. Since logarithm function exist as an inverse of p-adic exponent and
since rationals correspond to infinite but periodic pinary expansions, rational
points having the same p-adic norm can be reached by p-adic exponentials
using t which is infinite as ordinary integer. This result is expected to
generalize to the case of groups represented using rational-valued matrices.

One can define a hierarchy of p-adic Lie-groups by allowing extensions
allowing e and even its roots such that the algebras have p-adic radii pk.
Hence the fact that the powers e, ..., ep−1 define a finite-dimensional exten-
sions of p-adic numbers seems to have a deep group theoretical meaning.
One can define a hierarchy of increasingly refined extensions by taking the
generator of extension to be e1/n. For instance, in the case of translation
group this makes possible p-adic variant of Fourier analysis by using discrete
plane wave basis.

One can generalize also the notion of group by using the generalized
notion of number. This means that one starts from the restriction of the
group in question to a group acting in say rational and complex rational
linear space and requires that real and p-adic groups have rational group
transformations as common. By performing various completions one obtains
a generalized group having the characteristic book like structure. In this
kind of situation the relationship between various groups is clear and also
the role of extensions of p-adic numbers can be understood. The notion of
Lie-algebra generalizes also to form a book like structure. Coefficients of
the pages of the Lie-algebra belong to various number fields and rational
valued coefficients correspond to a part partially (because of the restriction
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|t|p < pk) common to all Lie-algebras.

5.1.1 SO(2) as example

A simple example is provided by the generalization of the rotation group
SO(2). The rows of a rotation matrix are in general n orthonormalized
vectors with the property that the components of these vectors have p-adic
norm not larger than one. In case of SO(2) this means the the matrix
elements a11 = a22 = a, a12 = −a21 = b satisfy the conditions

a2 + b2 = 1 ,

|a|p ≤ 1 ,

|b|p ≤ 1 . (23)

One can formally solve a as a =
√

1− b2 but the solution doesn’t exists
always. There are various possibilities to define the orthogonal group.

a) One possibility is to allow only those values of a for which square
root exists as p-adic number. In case of orthogonal group this requires
that both b = sin(Φ) and a = cos(Φ) exist as p-adic numbers. If one
requires further that a and b make sense also as ordinary rational numbers,
they define a Pythagorean triangle (orthogonal triangle with integer sides)
and the group becomes discrete and cannot be regarded as a Lie-group.
Pythagorean triangles emerge for rational counterpart of any Lie-group.

b) Other possibility is to allow an extension of the p-adic numbers allow-
ing a square root of any ordinary p-adic number. The minimal extensions
has dimension 4 (8) for p > 2 (p = 2). Therefore space-time dimension
and imbedding space dimension emerge naturally as minimal dimensions
for spaces, where p-adic SO(2) acts ’stably’. The requirement that a and
b are real is necessary unless one wants the complexification of so(2) and
gives constraints on the values of the group parameters and again Lie-group
property is expected to be lost.

c) The Lie-group property is guaranteed if the allowed group elements
are expressible as exponents of a Lie-algebra generator Q. g(t) = exp(iQt).
This exponents exists only provided the p-adic norm of t is smaller than one.
If one uses square root allowing extension, one can require that t satisfies
|t| ≤ p−n/2, n > 0 and one obtains a decreasing hierarchy of groups G1, G2, ...
For the physically interesting values of p (typically of order p = 2127−1 ) the
real counterparts of the transformations of these groups are extremely near
to the unit element of the group. These conclusions hold true for any group.
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An especially interesting example physically is the group of ’small’ Lorentz
transformations with t = O(

√
p). If the rest energy of the particle is of order

O(
√

p): E0 = m = m0
√

p (as it turns out) then the Lorentz boost with veloc-

ity β = β0
√

p gives particle with energy E = m/
√

1− β2
0p = m(1+ β2

0p
2 + ..)

so that O(p1/2) term in energy is Lorentz invariant. This suggests that non-
relativistic regime corresponds to small Lorentz transformations whereas in
genuinely relativistic regime one must include also the discrete group of
’large’ Lorentz transformations with rational transformations matrices.

d) One can extend the group to contain products G1G2, such that G1

is a rational matrix belonging to the restriction of the Lie-group to rational
matrices not obtainable from a unit matrix p-adically by exponentiation,
and G2 is a group element obtainable from unit element by exponentiation.
For instance, rational CP2 is obtained from the group of rational 3 × 3
unitary matrices as by dividing it by the U(2) subgroup of rational unitary
matrices.

Even the construction of the representations of the translation group
raises nontrivial issues since the construction of p-adic Fourier analysis is by
no means a nontrivial task. One can however define the concept of p-adic
plane wave group theoretically and p-adic plane waves are orthogonal with
respect to the inner product defined by the proposed p-adic integral.

The representations of 3-dimensional rotation group SO(3) can be con-
structed as homogenous functions of Cartesian coordinates of E3 and in
this case the phase factors exp(imφ) typically appearing in the expressions
of spherical harmonics do not pose any problems. The construction of p-adic
spherical harmonics is possible if one assumes that allowed spherical angles
(θ, φ) correspond to Pythagorean triangles.

A similar situation is encountered also in the case of CP2 spherical har-
monics in in fact, quite generally. This number theoretic quantization of
angles could be perhaps interpreted as a kind of cognitive quantum effect
consistent with the fact that only rationals can be visualized concretely and
relate directly to the sensory experience. More generally, the possibility to
realize only rationals numerically might reflect the facts that only rationals
are common to reals and p-adics and that cognition is basically p-adic.

5.1.2 Fractal structure of the p-adic Poincare group

p-Adic Poincare group, just as any other p-adic Lie group, contains en-
tire fractal hierarchy of subgroups with the same Lie-algebra. For instance,
translations mk → mk + pNak, where ak has p-adic norm not larger than
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one form subgroup for all values of N . The larger the value of N is, the
smaller this subgroup is. Quite generally this implies orbits within orbits
and representations within representations like structure so that p-adic sym-
metry concept contains hologram like aspect. This property of the p-adic
symmetries conforms nicely with the interpretation of p-adic symmetries as
cognitive representations of real symmetries since the symmetries can be
realized in a p-adically finite spatiotemporal volume of the cognitive space-
time sheet. Even more, this volume can be p-adically arbitrarily small. If
one identifies both p-adics and reals as a completion of rationals, the corre-
sponding real volumes are however strictly speaking infinite in absence of a
pinary cutoff.

The hierarchy of subgroups implies that M4
+ decomposes in a natural

manner to 4-cubes with side L0 = Np(L)Lp, where Np(L) = p−N denotes
the p-adic norm of L such that these 4-cubes are invariant under the group
of sufficiently small Poincare transformations. In real context these cubes
define a hierarchy of exteriors of cubes with decreasing sizes. One can have
full p-adic Poincare invariance in p-adically arbitrarily small volume. Only
those Poincare transformations, which leave the minimal p-adic cube invari-
ant are symmetries. Also this picture suggest that the p-adic space-time
sheets providing cognitive representations about finite space-time regions
by canonical identification can have very large size.

The construction of the p-adic Fourier analysis is a nontrivial problem.
The usual exponent functions fP (x) = exp(iPx), providing a representation
of the p-adic translations do not make sense as a Fourier basis: fP is not a
periodic function; fP does not converge if the norm of Px is not smaller than
one and the natural orthogonalization of the different momentum eigenstates
does not seem to be possible using the proposed definition of the definite
integral.

This state of affairs suggests that p-adic Fourier analysis involves number
theory. It turns out that one can construct what might be called number
theoretical plane waves and that p-adic momentum space has a natural
fractal structure in this case. The basic idea is to reduce p-adic Fourier
analysis to a Fourier analysis in a finite field G(p, 1) plus fractality in the
sense that all pm-scaled versions of the G(p, 1) plane waves are used. This
means that p-adic plane waves in a given interval [n, n + 1)pm are piecewise
constant plane waves in a finite field G(p, 1). Number theoretical p-adic
plane waves are pseudo constants so that the construction does not work
for p-adically differentiable functions. The pseudo-constancy however turns
out to be a highly desirable feature in the construction of the p-adic QFT
limit of TGD based on the mapping of the real H-quantum fields to p-adic
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quantum fields using the canonical identification.
The unsatisfactory feature of this approach is that number theoretic p-

adic plane waves do not behave in the desired manner under translations.
It would be nice to have a p-adic generalization of the plane wave concept
allowing a generalization of the standard Fourier analysis and a direct con-
nection with the theory of the representations of the translation group. A
natural idea is to to define exponential function as a solution of a p-adic
differential equation representing the action of a translation generator and
to introduce multiplicative pseudo constant making possible to define expo-
nential function for all values of its argument. One can develop an argument
suggesting that the plane waves obtained in this manner are indeed orthog-
onal.

Infinitesimal form of translational symmetry might be argued to be too
strong requirement since p-adically infinitesimal translations typically cor-
respond to real translations which are arbitrarily large: this is not consistent
with the idea that cognitive representations with a finite spatial resolution
are in question. This motivates a third approach to the p-adic Fourier
analysis. The basic requirement is that discrete subgroup of translations
commutes with the map of the real plane waves to their p-adic counter-
parts. This means that the products of the real phase factors are mapped
to the products of the corresponding p-adic phase factors. This is possible if
the phase factor is a rational complex number so that the phase angle corre-
sponds to a Pythagorean triangle. The p-adic images of the real plane waves
are defined for the momenta k = nkG, kG = φG/∆x, where φG ∈ [0, 2π] is
a Pythagorean phase angle and where the points xn = n∆x define a dis-
cretization of x-space, ∆x being a rational number. These plane waves form
a complete and orthogonalized set.

5.2 p-Adic Fourier analysis: number theoretical approach

Contrary to the original expectations, number theoretical Fourier analysis is
probably not basic mathematical tools of p-adic QFT since it fails to provide
irreducible representation for the translational symmetries. Despite this it
deserves documentation.

5.2.1 Fourier analysis in a finite field G(p, 1)

The p-adic numbers of unit norm modulo p reduce to a finite field G(p, 1)
consisting of the integers 0, 1, ..., p−1 with arithmetic operations defined by
those of the ordinary integers taken modulo p. Since the elements 1, ..., p−
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1 form a multiplicative group there must exists an element a of G(p, 1)
(actually several) such that ap−1 = 1 holds true in G(p, 1). This kind of
element is called primitive root. If n is a factor of p− 1: (p− 1) = nm, then
also am = 1 holds true. This reflects the fact that Zp−1 decomposes into
a product Zn1

m1
Zn2

m2
...Zns

ms
of commuting factors Zmi , such that mni

i divides
p− 1.

A Fourier basis in G(p, 1) can be defined using p functions fk(n), k =
0, .., p− 1. For k = 0, 1, ..., p− 2 these functions are defined as

fk(n) = ank , n = 0 , ..., p− 1 , (24)

and satisfy the periodicity property

fk(0) = fk(p− 1) .

The problem is to identify the lacking p:th function. Since fk(n) transforms
irreducibly under translations n → n + m it is natural to require that also
the p:th function transforms in a similar manner and satisfies the periodicity
property. This is achieved by defining

fp−1(n) = (−1)n . (25)

The counterpart of the complex conjugation for fk for k 6= p − 1 is defined
as fk → fp−1−k. fp−1 is invariant under the conjugation. The inner product
is defined as

〈fk, fl〉 =
p−2∑

n=0

fp−1−k(n)fl(n) = δ(k, l)(p− 1) . (26)

The dual basis f̂k clearly differs only by the normalization factor 1/(p− 1)
from the basis fp−k. The counterpart of Fourier expansion for any real
function in G(p, 1) can be obviously constructed using this function basis
and Fourier components are obtained as the inner products of the dual
Fourier basis with the function in question.

A natural interpretation for the integer k is as a p-adic momentum since
in the translations n → n + m the plane wave with k 6= p− 1 changes by a
phase factor akm. For k = p− 1 it transforms by (−1)m so that also now an
eigen state of finite field translations is in question.
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5.2.2 p-Adic Fourier analysis based on p-adic plane waves

The basic idea is to reduce p-adic Fourier analysis to the Fourier analysis in
G(p, 1) by using fractality.

a) Let the function f(x) be such that the maximum p-adic norm of f(x)
is p−m. One can uniquely decompose f(x) to a sum of functions fn(x) such
that |fn(x)|p = pn or vanishes in the entire range of definition for f :

f(x) =
∑

n≥m

fn(x) ,

fn(x) = gn(x)pn ,

|gn(x)| = 1 for g(x) 6= 0 . (27)

The higher the value of n, the smaller the contribution of fn. The expansion
converges extremely rapidly for the physically interesting large values of p.

b) Assume that f(x) is such that for each value of n one can find some
resolution pm(n) below which gn(x) is constant in the sense that for all
intervals [r, r + 1)pm(n) (defined in terms of the canonical identification) the
function fn(x) is constant. For p-adically differentiable functions this cannot
be the case since they would be pseudo constants if this were true. In the
physical situation CP2 size provides a natural p-adic cutoff so that only a
finite number of fn:s are needed and the resolution in question corresponds
to CP2 length scale. Hence ordinary plane waves (possibly with a natural
UV cutoff) should have an expansion in terms of the p-adic plane waves.

c) The assumption implies that in each interval (r, r + 1)pm(n)−1, gn can
be regarded as a function in G(p, 1) identified as the set x = (r+sp)pm(n)−1,
s = 0, 1, ..., p − 1. Hence one can Fourier expand fn(x) using G(p, 1) plane
waves fks. In this manner one obtains a rapidly converging expansion using
p-adic plane waves.

5.2.3 Periodicity properties of the number theoretic p-adic plane
waves

The periodicity properties of the p-adic plane waves make it possible to
associate a definite wavelength with a given p-adic plane wave. For the p-
adic momenta k not dividing p−1, the wavelength corresponds to the entire
range (n, n + 1)pm and its real counterpart is

λ = p−m−1/2l ,
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where l ∼ 104
√

G is the fundamental p-adic length scale. If k divides p−1 =∏
i m

ni
i , the period is mi and the real wavelength is

λ(mi) = mip
−m−1−1/2l .

One might wonder whether this selection of preferred wavelengths has
some physical consequences. The first thing to notice is that p-adic plane
waves do not replace ordinary plane waves in the construction of the p-adic
QFT limit of TGD. Rather, ordinary plane waves are expanded using the
p-adic plane waves so that the selection of the preferred wavelengths, if it
occurs at all, must be a dynamical process. The average value of the prime
divisors, and hence the number of different wavelengths for a given value of
p, counted with the degeneracy of the divisor is given by [22]

Ω(n) = ln(ln(n)) + 1.0346 ,

and is surprisingly small, or order 6 for numbers of order M127! If one can
apply probabilistic arguments or [22] to the numbers of form p−1, too then
one must conclude that very few wavelengths are possible for general prime
p! This in turn means that to each p there are associated only very few
characteristic length scales, which are predictable. Furthermore, all the pk-
multiples of these scales are also possible if p-adic fractality holds true in
macroscopic length scales.

Mersenne primes Mn can be considered as an illustrative example of
the phenomenon. From [23] one finds that M127 − 1 has 11 distinct prime
factors and 3 and 7 occurs three and 2 times respectively. The number
of distinct length scales is 3 · 211 − 1 ∼ 212. M107 − 1 and M89 − 1 have
7 and 11 singly occurring factors so that the numbers of length scales are
27 − 1 = 127 = M7 and 211 − 1. Note that for hadrons (M107) the number
of possible wavelengths is especially small: does this have something to do
with the collective behavior of color confined quarks and gluons? An inter-
esting possibility is that this length scale generation mechanism works even
macroscopically (for p-adic length scale hypothesis at macroscopic length
scales see the third part of the book). One cannot exclude the possibility
that long wavelength photons, gravitons and neutrinos might therefore pro-
vide a completely new mechanism for generating periodic structures with
preferred sizes of period.
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5.3 p-Adic Fourier analysis: group theoretical approach

The problem with the straightforward generalization of the Fourier analysis
is that the standard Taylor expansion of the plane wave exp(ikx) converges
only provided x has p-adic norm smaller than one and that the p-adic expo-
nential function does not have the periodicity properties of the ordinary ex-
ponential function guaranteing orthogonality of the functions of the Fourier
basis. Besides this one must assume p mod 4 = 3 to guarantee that

√−1
does not exist as ordinary p-adic number.

5.3.1 The approach based on algebraic extensions allowing trigonom-
etry

In an attempt to construct Fourier analysis the safest approach is to start
from the ordinary Fourier analysis at circle or that for a particle in a one-
dimensional box. The function basis uses as the basic building blocks the
functions einφ in the case of circle and functions einπx/L in the case of a
particle in a box of side L.

The view about rationals as common to both reals and p-adics, and the
possibility of finite-dimensional extensions of p-adics generated by the roots
ei2π/pk

suggest how to realize this idea.
a) Consider first the case of the circle. Fix some value of N and select a

set of points φn = in2π/pk at which the phases are defined meaning pk+1-
dimensional algebraic extension. That powers of p appear is consistent with
p-adic fractality. If so spin 1/2 resp. spin 1 particles would be inherently
2-adic resp. 3-adic. The plane wave basis corresponds exp(ikφn), k =
0, ..., N − 1. In the case of particle in the one-dimensional box such that L
corresponds to a rational number, the box is decomposed into N intervals
of length L/N .

b) One can assign to the phases a well defined angular momentum as
integer n = 0, ..., N − 1 whereas the momentum spectrum for a particle in
a box are given by nπ/L. It is possible to continue the phase factor to the
neighborhood of each point by requiring that the differential equation

d

dx
exp(ikx) = ikexp(ikx)

defining the exponential function is satisfied.
c) The inner product of the plane waves fk1) and fk2 can be defined as

the sum
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〈k1〉 ≡
∑
n

fk1
(xn)fk2(xn) , (28)

and orthogonality and completeness differ by no means from those of ordi-
nary Fourier analysis.

5.3.2 p-Adic Fourier analysis, Pythagorean phases, and Gaussian
primes

An alternative approach is based on Pythagorean phases and discretization
in x-space, which is very natural thing to do if p-adic field theory is taken as
a cognitive model rather than ’real’ physics. This is also natural because ra-
tional Minkowski space is in the algebraic approach the fundamental object
and reals and p-adics emerge as its completions.

Rational phase factors are common to the complexified p-adics (p mod 4 =
3) and reals and this suggests that one should define p-adic plane waves so
that their values are in the set of the Pythagorean phases. Pythagorean
phases are in one-one correspondence with the phases of the squares of
Gaussian integers NG and thus generated as products of squares of Gaus-
sian primes πG, which are complex integers with modulus squared equal to
prime p mod 4 = 1. Thus the set of phases φ(πG) for the phases for π2

G

form an algebraically infinite-dimensional linear space in the sense that the
phases representable as superpositions

2φG =
∑
πG

nπG2φ(πG)

of these phases with integer coefficients belong to the set.
Consider now the definition of the plane wave basis based on Pythagorean

phases and the identification of the p-adics and reals via common rationals.
a) Let x0 = q = m/n denote a value of x-coordinate and let k denote

some value of momentum. If exp(ikx0) is a Pythagorean phase then also the
multiples nk correspond to Pythagorean phases. k itself cannot be a rational
number so that k is not defined as an ordinary p-adic number: this could
be seen as a defect of the approach since one cannot speak of a well-defined
momentum. Neither can k be a rational multiple of π so that Pythagorean
phases have nothing to do with the phases defined by algebraic extensions
containing the phase exp(iπ/n) already discussed.

For a given value of x0 = q the momenta k for which exp(ikq) is a
Pythagorean phase are in one-one correspondence with Pythagorean phases.
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Moreover, Pythagorean phases result in the lattice defined by the multiples
of the x0. Thus a natural definition of the p-adic plane waves emerges
predicting a maximal momentum spectrum with one-one correspondence
with Pythagorean phases, and selecting a preferred lattice of points at the
real axis. This definition is also in accordance with the idea that p-adic
plane waves are related with a cognitive representation for real physics.

b) Pythagorean phases are in one-one correspondence with the phase
factors associated with the squares of the Gaussian integers and generating
phases correspond to the phases φ(πG) associated with the squares of Gaus-
sian primes πG. The moduli squared for the Gaussian primes correspond to
squares of rational primes p mod 4 = 1. Thus set of allowed momenta kG

for given spatial resolution m/n is the set

{kG(q)} = {2φG/
q + 2πn

q |n ∈ Z} ,

{φG} = {∑πG
nπGφ(πG)} .

When the spatial resolution x0 = q is replaced with q1 = r/s, the spectrum
is scaled by a rational factor q/q1. The set of momenta is a dense subset of
the real axis. There is no observable difference between the real momenta
differing by a multiple of 2π/q and one must drop them from consideration.
This conclusion is forced also by the fact that p-adically the momenta k =
nk0 do not exist, it is only the phase factors which exist.

c) It is easy to see that the p-adic plane waves with different momenta
are orthogonal to each other as complex rational numbers:

∑
n

exp [in(kG(1)− kG(2))] = 0 .

d) Also completeness relations are satisfied in the sense that the condition

∑

kG

exp [i(n1 − n2)kG] = 0

is satisfied for n1 6= n2. This is due to the fact that all integer multiples
of kG define Pythagorean phases. This means that the Fourier series of
a function with respect to Pythagorean phases makes sense and one can
expand p-adic-valued functions of space-time coordinates as Fourier series
using Pythagorean phases. In particle expansion of the the imbedding space
coordinates as functions of p-adic space-time coordinates might be carried
out in this manner.
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e) One can criticise this approach for the fact that there is no unique
continuation of the phase factors from the set of the rationals xn = nx0 to
p-adic numbers neighborhoods of these points. Although eigen states of fi-
nite translations are in question one cannot regard the states as eigen states
of infinitesimal translations since the momenta are not well defined as p-
adic numbers. One could of course arbitrarily assign momentum eigenstate
einπ(x−xk) the point xk to the eigenstate characterized by the dimension-
less momentum n but the momentum spectrum associated with different
Pythagorean phases would be same.

6 Generalization of Riemann geometry

In real context the coordinatization of manifold is regarded as a trivial prob-
lem. It took long time to realize that in p-adic context the proper treatment
of coordinatization problem leads to deep insights about p-adic symmetries
and about the origin og the p-adic length scales hypothesis. There are sev-
eral approaches to the construction of the p-adic Riemann geometry. The
most simple minded approach relies on a direct generalization of the real
line element and to the proposed integral for p-adically analytic functions.
A more refined approach relies on the general physical consistency conditions
provided by quantum TGD and by the proposed definition of the Riemann
integral.

6.1 p-Adic Riemannian geometry as a direct formal gener-
alization of real Riemannian geometry

It is possible to generalize the concept of the (sub)manifold geometry to a
p-adic (sub)manifold geometry and it seems that this definition of p-adic
geometry indeed works at the level of the imbedding space. The formal
definition of p-adic Riemannian geometry is based on p-adic line element

ds2 = gkldxkdxl .

The minimal requirement is that inner products of tangent space vectors
exist. Lengths and angles are defined in the usual manner.

A stronger and somewhat questionable requirement is that also curve
lengths, areas, volumes, etc.. exist. This requires the definition of the
square root ds of the line element. In general case the existence of a square
root forces an extension of the p-adic numbers allowing square roots of
ordinary p-adic numbers. As found, the extension is 4-dimensional for p > 2
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and 8-dimensional in p = 2 case. It must be emphasized that the algebraic
dimensions do not have interpretation as physical dimensions. The extension
in question must appear as a coefficient ring of the p-adic tangent space so
that p-adic Riemann spaces must be locally Cartesian powers of 4− (p > 2)
or 8-dimensional (p = 2) extension. Therefore the TGD:eish dimensions
of the space-time and imbedding space emerge very naturally in the p-adic
context. In order to avoid the appearance of an imaginary unit in p mod 4 =
3 case, one must multiply ds2 with −1 if the square root of (ds

dt )
2 is imaginary

so that one has

s =
∫

ds =
∫ √

εgkl
dxk

dt

dxl

dt
dt ,

where ε is a sign factor. The p-adic length of a curve can be calculated if
the integrand is integrable in the sense defined previously.

The definition of a pseudo-Riemannian metric poses problem: it seems
that one should be able to make distinction between negative and positive
p-adic numbers. A possible manner to make this distinction is to define p-
adic numbers with unit norm to be positive or negative according to whether
they are squares or not. This definition makes sense if −1 does not possess
square root: this is true for p mod 4 = 3. This condition will be encountered
in most applications of the p-adic numbers. At analytic level the definition
generalizes in an obvious manner: what is required that the components
of the metric are ordinary p-adic numbers. The p-adic counter part of the
Minkowski metric can be defined as

ds2
p = (dm0)2 − ((dm1)2 + (dm2)2 + (dm3)2) . (29)

The real image of this line element under canonical identification is non-
negative but the metric allows to define the p-adic counterpart of M4 light-
cone as the surface (m0)2−((m1)2 +(m2)2 +(m3)2) = 0 and this surface can
be regarded as a fractal counterpart of the ordinary light cone. Furthermore,
this metric allows the p-adic counterpart of the Lorentz group as its group
of symmetries.

The p-adic length of a curve can be finite also in the case when the
real length diverges. This is the case for fractal curves contained in a finite
volume of space: coast of Britain is the canonical example. The reason is
that by p-adic ultra-metricity p-adic length is necessarily bounded. It is not
clear whether the generalized p-adic Riemann sum has well defined limit
for curves, which are general fractals. An interesting possibility is that one
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could define the length of a fractal curve (’coast line of Britain’) using p-adic
Riemannian geometry. A possible model of this curve is obtained by iden-
tifying the ordinary real plane with its p-adic counterpart via the canonical
identification and modelling the fractal curve with p-adically analytic curve
x = x(t). The real counterpart of this curve is certainly a fractal and need
not have a well defined real length. The p-adic length of this curve can
be defined as the p-adic integral of sp =

∫
ds and its real counterpart sR

obtained by the canonical identification can be defined to be the real length
of the curve.

p-Adic Riemann geometry has some special features resulting from ultra-
metricity. For instance, the real counterpart for the p-adic length can be
longer for a portion of a curve than for the entire curve! A good example
is the p-adic length for the portion (0 < x < 1, y > 0) of the unit circle
x2 + y2 = 1, which can be written as

s(φ) = arcsin(x) .

arcsin(x = 1) is not well defined p-adically so that one must actually
define the p-adic counterpart of xR = 1 as x = −p. The length of a
quadrant is s(π/2) = arcsin(−p) so that the length of a half circle is
s(π) = 2arcsin(−p). In order O(p) the length of a quadrant is s(π/2) ='
−p ' (p − 1)p whereas the length of a semicircle is s(π) ' −2p ' (p − 2)p
so that the real counterpart sR(π) ' (p − 2)/p for the p-adic length of a
half circle is shorter than the length sR(π/2) ' (p − 1)/p of a quadrant
for sufficiently large values of p! For very large values of p the lengths are
identical in excellent approximation. If one uses the length of a quadrant as
a definition of p-adic π/2 one has ”π/2” = −arcsin(p) which gives for the
real counterpart of p-adic ”π/2”R: (”π/2”)R ' 1 for large values of p.

6.2 Topological condensate as a generalized manifold

It seems that the concept of the p-adic Riemann manifold is not as such
enough for the mathematization of the topological condensate concept. This
manifold can be given locally p-adic topology but decomposes into regions
with different values of the p-adic prime p. Also real regions are possible.
These regions are glued together along their boundaries.

One can consider two possibilities for performing the identification map.
Gluing together along common rationals at the boundaries defined by the
rational topology is the first option, and certainly the fundamental one if
one assumes that space-times are surfaces in a rational imbedding space
which can be completed to either real or p-adic imbedding space. This kind
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of gluing operation is very natural for the solutions of the field equations
obtained by a completion of rationals to various number fields in which the
power series representing the solution of the field equations converge. This
will be discussed in detail in the chapter ”TGD as a generalized number
theory”.

The second option is the use of canonical identification map or some
generalization of this map mapping real space-time regions to their p-adic
counterparts. This gluing operation makes sense in case of cognitive repre-
sentations and is not so fundamental. In this case p-adic space-time surfaces,
possibly characterized by different value of prime p, are like different sheets
of a chart having common overlap region. Although the p-adic regions can
be disjoint they correspond to cognitive images of the real regions such that
some overlap region is mapped to the both p-adic chart sheets. This common
region defines the gluing of the p-adic surfaces together.

If one requires that the p-adic space-time surface is differentiable and
even more, satisfies the p-adic counterparts of the field equations, one must
loosen the cognitive mapping so that the image of the real space-time sur-
face is discrete. Therefore one must weaken also the gluing conditions by
introducing pinary cutoff.

6.3 p-Adic conformal geometry?

It would be nice to have a generalization of the ordinary conformal geometry
to the p-adic context. A possibility worth of studying is that the induced
Kähler form defining a Maxwell field on the space-time surface, could be the
basic entity of the 4-dimensional conformal geometry rather than metric. If
the existence of square root is required the dimension of this geometry is
D = 4 of D = 8 depending on the value of p. In the following it is assumed
that the extension used is the minimal extension allowing square root and
p mod 4 = 3 condition holds so that the imaginary unit belongs to the
generators of the extension.

In 2-dimensional case line element transforms by a conformal scale factor
in p-analytic map Z → f(Z). In the four-dimensional case this requirement
leads to a degenerate line element

ds2 = g(Z,Zc, ...)dZdZc ,

= g(Z,Zc, ..)(dx2 + dy2 + p(du2 + dv2) + 2
√

p(dxdu + dydv)) ,(30)

where the conformal factor g(Z, Zc, ..) is invariant under the complex conju-
gation. The metric tensor associated with the line element does not possess
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an inverse. This is obvious from the fact that the line element depends on
two coordinates Z, Zc only so that the p-adic conformal metric is effectively
2-dimensional rather than 4-dimensional. It therefore seems that one must
give up conformal covariance requirement for the line element.

In two-dimensional conformal geometry angles are the simplest confor-
mal invariants and are expressible in terms of the inner product. In 4-
dimensional case one can define invariants, which are analogous to angles.
Let A and B be two vectors in the 4-dimensional quadratic extension al-
lowing a square root. Denote A (B) and its various conjugates by Ai (Bi),
i = 1, 2, 3, 4. Define phase like quantities Xij = “exp(i2Φij)” between A and
B by the following formulas

Xij ≡ AiAjBkBl√
A1A2A3A4

√
B1B2B3B4

. (31)

where i, j, k, l is permutation of 1, 2, 3, 4. Each quantity Xij is invariant
under one of the conjugations c, ˆor ĉ and Xij has values in 2-dimensional
subspace of the 4-dimensional extension. As in ordinary case the angles are
invariant under conjugation and this means that only 3 angle like quantities
exists: this is in accordance with the fact that 3-angles are needed to specify
the orientation of the vector A with respect to the vector B.

One can define also more general invariants using four vectors A,B, C,D
and permutations i, j, k, l and r, s, t, u of 1, 2, 3, 4

Uijkl =
Xijkl

Xrstu
,

Xijkl ≡ AiBjCkDl . (32)

The number of the functionally independent invariants is reduced if various
conjugates of the invariants are not counted as different invariants. If 2 or 3
vectors are identical one obtains as a special case invariants associated with
3 and 2 vectors. If there are only two vectors the number of the functionally
independent invariants is 6.

There exists quadratic conformal covariants associated with tensors of
weight two. The general form of the covariant is given by

X = gij:klAijBkl . (33)
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The tensor gij:kl has the property that in complex coordinates Z, Z̄, Ẑ,
¯̂
Z the

only nonvanishing components of the tensor have i 6= j 6= k 6= l. This guar-
antees the multiplicative transformation property in the conformal transfor-
mations Z → W (Z):

X(W ) =
dW

dZ

dW̄

dZ̄

dŴ

dẐ

d
¯̂
W

d
¯̂
Z

X(Z) . (34)

The simplest example of tensor gij:kl is permutation symbol and the in-
stanton density of any gauge field defines a p-adic conformal covariant (the
quantity is actually Diff4 invariant).

7 Appendix: p-Adic square root function and square
root allowing extension of p-adic numbers

The following arguments demonstrate that the extension allowing square
roots of ordinary p-adic numbers is 4-dimensional for p < 2 and 8-dimensional
for p = 2.

7.1 p > 2 resp. p = 2 corresponds to D = 4 resp. D = 8
dimensional extension

What is important is that only the square root of ordinary p-adic numbers
is needed: the square root need not exist outside the real axis. It is indeed
impossible to find a finite-dimensional extension allowing square root for all
ordinary p-adic numbers numbers. For p > 2 the minimal dimension for
algebraic extension allowing square roots near real axis is D = 4. For p = 2
the dimension of the extension is D = 8.

For p > 2 the form of the extension can be derived by the following
arguments.

a) For p > 2 a p-adic number y in the range (0, p − 1) allows square
root only provided there exists a p-adic number x ∈ {0, p − 1} satisfying
the condition y = x2 mod p. Let x0 be the smallest integer, which does not
possess a p-adic square root and add the square root θ of x0 to the number
field. The numbers in the extension are of the form x + θy. The extension
allows square root for every x ∈ {0, p− 1} as is easy to see. p-adic numbers
mod p form a finite field G(p, 1) [21] so that any p-adic number y, which
does not possess square root can be written in the form y = x0u, where u
possesses square root. Since θ is by definition the square root of x0 then
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also y possesses square root. The extension does not depend on the choice
of x0.

The square root of −1 does not exist for p mod 4 = 3 [24] and p = 2
but the addition of θ gurantees its existence automatically. The existence
of
√−1 follows from the existence of

√
p− 1 implied by the extension by θ.√

(−1 + p)− p can be developed in power in powers of p and series converges
since the p-adic norm of coefficients in Taylor series is not larger than 1. If
p− 1 does not possess a square root, one can take θ to be equal to

√−1.
b) The next step is to add the square root of p so that the extension

becomes 4-dimensional and an arbitrary number in the extension can be
written as

Z = (x + θy) +
√

p(u + θv) . (35)

In p = 2 case 8-dimensional extension is needed to define square roots.
The addition of

√
2 implies that one can restrict the consideration to the

square roots of odd 2-adic numbers. One must be careful in defining square
roots by the Taylor expansion of square root

√
x0 + x1 since n:th Taylor

coefficient is proportional to 2−n and possesses 2-adic norm 2n. If x0 pos-
sesses norm 1 then x1 must possess norm smaller than 1/8 for the series to
converge. By adding square roots θ1 =

√−1, θ2 =
√

2 and θ3 =
√

3 and
their products one obtains 8-dimensional extension.

The emergence of the dimensions D = 4 and D = 8 for the algebraic
extensions allowing the square root of an ordinary p-adic number stimulates
an obvious question: could one regard space-time as this kind of an algebraic
extension for p > 2 and the imbedding space H = M4

+ × CP2 as a similar
8-dimensional extension of the 2-adic numbers? Contrary to the first expec-
tations, it seems that algebraic dimension cannot be regarded as a physical
dimension, and that quaternions and octonions provide the correct frame-
work for understanding space-time and imbedding space dimensions. One
could perhaps say that algebraic dimensions are additional dimensions of the
world of cognitive physics rather than those of the real physics and there
presence could perhaps explain why we can imagine all possible dimensions
mathematically.

By construction, any ordinary p-adic number in the extension allows
square root. The square root for an arbitrary number sufficiently near to
p-adic axis can be defined through Taylor series expansion of the square root
function

√
Z at a point of p-adic axis. The subsequent considerations show

that the p-adic square root function does not allow analytic continuation to
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R4 and the points of the extension allowing a square root consist of disjoint
converge cubes forming a structure resembling future light cone in certain
respects.

7.2 p-Adic square root function for p > 2

The study of the properties of the series representation of a square root
function shows that the definition of the square root function is possible in
certain region around the real p-adic axis. What is nice that this region can
be regarded as the p-adic analog (not the only one) of the future light cone
defined by the condition

Np(Im(Z)) < Np(t = Re(Z)) = pk , (36)

where the real p-adic coordinate t = Re(Z) is identified as a time coordinate
and the imaginary part of the p-adic coordinate is identified as a spatial co-
ordinate. The p-adic norm for the four-dimensional extension is analogous
to ordinary Euclidian distance. p-Adic light cone consists of cylinders par-
allel to time axis having radius Np(t) = pk and length pk−1(p−1). As a real
space (recall the canonical correspondence) the cross section of the cylinder
corresponds to a parallelpiped rather than ball.

The result can be understood heuristically as follows.
a) For the four-dimensional extension allowing square root (p > 2) one

can construct square root at each point x(k, s) = spk represented by ordinary
p-adic number, s = 1, ..., p − 1, k ∈ Z. The task is to show that by using
Taylor expansion one can define square root also in some neighbourhood of
each of these points and find the form of this neighbourhood.

b) Using the general series expansion of the square root function one
finds that the convergence region is p-adic ball defined by the condition

Np(Z − spk) ≤ R(k) , (37)

and having radius R(k) = pd, d ∈ Z around the expansion point.
c) A purely p-adic feature is that the convergence spheres associated

with two points are either disjoint or identical! In particular, the conver-
gence sphere B(y) associated with any point inside convergence sphere B(x)
is identical with B(x): B(y) = B(x). The result follows directly from the
ultra-metricity of the p-adic norm. The result means that stepwise ana-
lytic continuation is not possible and one can construct square root function
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only in the union of p-adic convergence spheres associated with the points
x(k, s) = spk which correspond to ordinary p-adic numbers.

d) By the scaling properties of the square root function the convergence
radius R(x(k, s)) ≡ R(k) is related to R(x(0, s)) ≡ R(0) by the scaling factor
p−k:

R(k) = p−kR(0) , (38)

so that the convergence sphere expands as a function of the p-adic time
coordinate. The study of the convergence reduces to the study of the series
at points x = s = 1, ..., k − 1 with a unit p-adic norm.

e) Two neighboring points x = s and x = s+1 cannot belong to the same
convergence sphere: this would lead to a contradiction with the basic results
of about square root function at integer points. Therefore the convergence
radius satisfies the condition

R(0) < 1 . (39)

The requirement that the convergence is achieved at all points of the real
axis implies

R(0) =
1
p

,

R(pks) =
1

pk+1
. (40)

If the convergence radius is indeed this, then the region, where the square
root is defined, corresponds to a connected light cone like region defined
by the condition Np(Im(Z)) = Np(Re(Z)) and p > 2-adic space time is
the p-adic analog of the M4 lightcone. If the convergence radius is smaller,
the convergence region reduces to a union of disjoint p-adic spheres with
increasing radii.

How the p-adic light cone differs from the ordinary light cone can be
seen by studying the explicit form of the p-adic norm for p > 2 square root
allowing extension Z = x + iy +

√
p(u + iv)

Np(Z) = (Np(det(Z)))
1
4 ,

= (Np((x2 + y2)2 + 2p2((xv − yu)2 + (xu− yv)2) + p4(u2 + v2)2))
1
4 ,

(41)
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where det(Z) is the determinant of the linear map defined by a multiplication
with Z. The definition of the convergence sphere for x = s reduces to

Np(det(Z3)) = Np(y4 + 2p2y2(u2 + v2) + p4(u2 + v2)2)) < 1 . (42)

For physically interesting case p mod 4 = 3 the points (y, u, v) satisfying the
conditions

Np(y) ≤ 1
p

,

Np(u) ≤ 1 ,

Np(v) ≤ 1 , (43)

belong to the sphere of convergence: it is essential that for all u and v
satisfying the conditions one has also Np(u2 + v2) ≤ 1. By the canonical
correspondence between p-adic and real numbers, the real counterpart of
the sphere r = t is now the parallelpiped 0 ≤ y < 1, 0 ≤ u < p, 0 ≤ v < p,
which expands with an average velocity of light in discrete steps at times
t = pk.

7.3 Convergence radius for square root function

In the following it will be shown that the convergence radius of
√

t + Z is
indeed non-vanishing for p > 2. The expression for the Taylor series of√

t + Z reads as

√
t + Z = =

√
x

∑
n

an ,

an = (−1)n (2n− 3)!!
2nn!

xn ,

x =
Z

t
. (44)

The necessary criterion for the convergence is that the terms of the power
series approach to zero at the limit n → ∞. The p-adic norm of the n:th
term is for p > 2 given by

Np(an) = Np(
(2n− 3)!!

n!
)Np(xn) < Np(xn)Np(

1
n!

) . (45)
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The dangerous term is clearly the n! in the denominator. In the following
it will be shown that the condition

U ≡ Np(xn)
Np(n!)

< 1 for Np(x) < 1 , (46)

holds true. The strategy is as follows:
a) The norm of xn can be calculated trivially: Np(xn) = p−Kn,K ≥ 1.
b) Np(n!) is calculated and an upper bound for U is derived at the limit of
large n.

7.3.1 p-Adic norm of n! for p > 2

Lemma 1: Let n =
∑k

i=0 n(i)pi, 0 ≤ n(i) < p be the p-adic expansion of n.
Then Np(n!) can be expressed in the form

Np(n!) =
k∏

i=1

N(i)n(i) ,

N(1) =
1
p

,

N(i + 1) = N(i)p−1p−i . (47)

An explicit expression for N(i) reads as

N(i) = p−
∑i

m=0
m(p−1)i−m

. (48)

Proof: n! can be written as a product

Np(n!) =
k∏

i=1

X(i, n(i)) ,

X(k, n(k)) = Np((n(k)pk)!) ,

X(k − 1, n(k − 1)) = Np(
n(k−1)pk−1∏

i=1

(n(k)pk + i)) = Np((n(k − 1)pk−1)!) ,

X(k − 2, n(k − 2)) = Np(
n(k−2)pk−2∏

i=1

(n(k)pk + n(k − 1)pk−1 + i) , )

= Np((n(k − 2)pk−2)!) ,

X(k − i, n(k − i)) = Np((n(k − i)pk−i)!) . (49)
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The factors X(k, n(k)) reduce in turn to the form

X(k, n(k)) =
n(k)∏

i=1

Y (i, k) ,

Y (i, k) =
pk∏

m=1

Np(ipk + m) . (50)

The factors Y (i, k) in turn are indentical and one has

X(k, n(k)) = X(k)n(k) ,

X(k) = Np(pk!) . (51)

The recursion formula for the factors X(k) can be derived by writing
explicitely the expression of Np(pk!) for a few lowest values of k:
1) X(1) = Np(p!) = p−1.
2) X(2) = Np(p2!) = X(1)p−1p−2 ( p2! decomposes to p−1 products having
same norm as p! plus the last term equal to p2.
i) X(i) = X(i− 1)p−1p−i

Using the recursion formula repeatedly the explicit form of X(i) can be
derived easily. Combining the results one obtains for Np(n!) the expression

Np(n!) = p−
∑k

i=0
n(i)A(i) ,

A(i) =
i∑

m=1

m(p− 1)i−m . (52)

The sum A(i) appearing in the exponent as the coefficient of n(i) can be
calculated by using geometric series

A(i) = (
p− 1
p− 2

)2(p− 1)i−1(1 +
i

(p− 1)i+1
− (i + 1)

(p− 1)i
) ,

≤ (
p− 1
p− 2

)2(p− 1)i−1 . (53)
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7.3.2 Upper bound for Np(xn

n! ) for p > 2

By using the expressions n =
∑

i n(i)pi, Np(xn) = p−Kn and the expression
of Npn! as well as the upper bound

A(i) ≤ (
p− 1
p− 2

)2(p− 1)i−1 . (54)

For A(i) one obtains the upper bound

Np(
xn

n!
) ≤ p

−
∑k

i=0
n(i)pi(K−(

(p−1)
(p−2)

)2(
(p−1)

p
)i−1)

.

(55)

It is clear that for Np(x) < 1 that is K ≥ 1 the upper bound goes to
zero. For p > 3 exponents are negative for all values of i: for p = 3 some
lowest exponents have wrong sign but this does not spoil the convergence.
The convergence of the series is also obvious since the real valued series

1

1−
√

Np(x)
serves as a majorant.

7.4 p = 2 case

In p = 2 case the norm of a general term in the series of the square root
function can be calculated easily using the previous result for the norm of
n!:

Np(an) = Np(
(2n− 3)!!

2nn!
)Np(xn) = 2−(K−1)n+

∑k

i=1
n(i)

i(i+1)

2i+1 . (56)

At the limit n → ∞ the sum term appearing in the exponent approaches
zero and convergence condition gives K > 1, so that one has

Np(Z) ≡ (Np(det(Z)))
1
8 ≤ 1

4
. (57)

The result does not imply disconnected set of convergence for square root
function since the square root for half odd integers exists:

√
s +

1
2

=
√

2s + 1√
2

, (58)
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so that one can develop square as a series in all half odd integer points of the
p-adic axis (points which are ordinary p-adic numbers). As a consequence,
the structure for the set of convergence is just the 8-dimensional counterpart
of the p-adic light cone. Space-time has natural binary structure in the
sense that each Np(t) = 2k cylinder consists of two identical p-adic 8-balls
(parallelpipeds as real spaces).
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